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Abstract— One of the challenging control problems of an
underground coal gasification (UCG) process involves main-
taining a desired heating value from the extracted product
gases. In this paper, a model-based control and state estimation
of UCG process is described. For the purpose of control and
state estimation, a sophisticated model of UCG process, based
on partial differential equations is approximated with a gain-
scheduled nonlinear control-oriented model. Based on this ap-
proximated plant model, a robust integral sliding mode control
is designed to track a desired heating value. Furthermore, for
the estimation of unknown states of the system, a gain-scheduled
modified Utkin observer is designed as well. The robustness of
the nonlinear control and estimation techniques is exploited by
introducing parametric uncertainties in the UCG plant. The
simulation results highlight the effectiveness of the proposed
nonlinear control and estimation techniques in comparison to
a conventional PI controller.

I. INTRODUCTION

Due to the stringent environmental legislations on clean
energy production by means of coal, measures have been
taken for employing underground coal gasification process
(UCG) in some parts of the world [1], [2]. Gasification
is one of the clean coal technologies which involves the
conversion of coal beds beneath the surface of the earth into
useful synthesis gas (syngas). For this purpose, two wells are
drilled from surface to the coal seam and a permeable link
is established between the wells. Afterwards, oxidants (air
and steam (H2O), or (O2) and H2O or only air) are injected
from one well which chemically react with already ignited
coal to produce syngas.

Most of the industrial applications, e.g., integrated gasi-
fication combined cycle turbines (IGCC), require a desired
heating value of the syngas [3]. In practice, the composi-
tion and flow rate of injected oxidants act as manipulated
variables to control the heating value in a UCG plant. The
presence of parametric uncertainties, modeling inaccuracies
as well as unknown disturbances acting on the system impose
a challenging control problem.

In [4] and [5], a conventional PID controller is designed
for a lab scale UCG setup to control concentration, tem-
perature and heating value of product gases. Moreover, a
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sliding mode control (SMC) and super-twisting control are
developed for a simplified time domain model of UCG in [6],
[7], [8]. However, all the system’s states are assumed to be
measurable in [6], which is usually not the case. The work
in [7], [8] employs a simplified model of the UCG process to
compute estimates for controller gains. Due to the physical
structure of a UCG plant, it is not possible to measure steam
concentration, solid temperature and densities of coal and
char. In this paper, an integral sliding mode is proposed to
track desired heating value for the control-oriented model of
UCG plant under the influence of parametric uncertainties as
well as measurement noise. Furthermore, unknown states of
the system are reconstructed using a gain-scheduled modified
Utkin observer [9], [10].

This paper is arranged as follows: In Section II, the non-
linear control-oriented model of the UCG plant is presented.
The integral SMC and the gain-scheduled modified Utkin
observer for the UCG plant are designed in Sections III
and IV, respectively. The control implementation is discussed
in Section V. The simulation results of the proposed and
a conventional PI controller are described in Section VI.
Finally, the paper is concluded in Section VII.

II. UCG PROCESS MODEL

The nonlinear control-oriented model of UCG process [6]
presented in this section, is derived from one-dimensional
packed models of [11] and [12]. The mathematical model
comprises of mass and energy balances of solids and gases.
The dynamics of coal density ρ

coal
(g/cm3), char density ρ

char

(g/cm3) and solid temperature Ts (K) are given by

ρ̇
coal

= −M1R1 ,

ρ̇
char

= −M2(as2,1R1 −R2 −R3),

Ṫs =
1

Cs

(
ht(T − Ts)−∆q2R2 −∆q3R3

)
. (1)

Applying mass balance on the gases (CO, CO2, H2, CH4,
H2O, O2, N2, Tar) results in time-derivatives of gases con-
centration Ci (mol/cm3) given as follows

Ċ
CO

= a1,1R1 +R3 − βC
CO

,

ĊCO2
= a2,1R1 +R2 − βCCO2

,

ĊH2
= a3,1R1 +R3 − βCH2

,

Ċ
CH4

= a4,1R1 − βC
CH4

,

Ċ
Tar

= a5,1R1 − βC
Tar

, (2)



Ċ
H2O

= a6,1R1 + a6,2R2 + a6,3R3 − βC
H2O

+
α

L
u ,

Ċ
O2

= a7,2R2 − βC
O2

+
δ

L
u ,

Ċ
N2

= −βC
N2

+
γ

L
u . (3)

Herein, R1, R2 and R3 are the reaction rates which are a
function of the gases concentrations, solid temperature as
well as densities of coal and char, respectively. The empirical
relationships of these reaction rates are as follows:

R1 = 5
ρ

coal

M1
exp

(
−6039

Ts

)
, Rm2

=
1

10
htmO2

,

Rc2 =
1

M2

(
9.55× 108ρ

char
mO2

P exp

(
−22142

Ts

)
T−0.5
s

)
,

R2 =
1

1

Rc2

+
1

Rm2

, Rm3
=

1

10
htmH2O

Rc3 =

ρ2m
2
H2O

P 2 exp

(
5.052− 12908

Ts

)
M2

(
m

H2O
P + exp

(
−22.216 +

24880

Ts

))2 ,

R3 =
1

1

Rc3

+
1

Rm3

, (4)

where mO2
and mH2O are internal molar fractions of O2 and

H2O. Mathematically, the molar fractions are expressed as

mO2
=

C
O2

CT + CH2O

, mH2O =
C

H2O

CT + CH2O

,

C
T
= C

CO
+ C

CO2
+ C

H2
+ C

CH4
+ C

Tar
+ C

O2
+ C

N2
.

The description of the model parameters is listed in Table. I.
Furthermore, the nominal values of the parameter are re-
ported in [6].

TABLE I: List of parameters and states.

Symbol Description
Mi Molecular weight (g/mol), i = 1, 2 for coal and char,

respectively

T Gas temperature (K)

as2,1 Stoichiometric coefficient of char in coal pyrolysis
reaction

ht Heat transfer coefficient (cal/s/K/cm3)

Cs Specific heat capacity of solids (cal/g/K)

Ri Rate of a chemical reaction (mol/cm3/s), i = 1, 2, 3
represents pyrolysis, char oxidation and steam gasi-
fication, respectively

ai,j Stoichiometric coefficient of gas i in reaction j

∆qi Heat of reaction i (cal/mol), i = 1, 2 represents char
oxidation and steam gasification, respectively

L Length of the reactor (cm)

βCi Approximation of spatial derivative (mol/cm3/s) [6]

u Flow rate of injected gases (moles/cm2/s)

α, δ,γ Percentages of H2O, O2 and N2 in u

For the model-based control design, a control-oriented model

is a prerequisite. The state vector x for the control-oriented
model of UCG is chosen as

x = [ρcoal
ρ

char
Ts CCO CCO2

CH2

C
CH4

C
Tar

CH2O C
O2

C
N2
]T .

(5)

The data acquisition system for a UCG process employs a
gas analyzer which measures the percentage volume content
for dry gases. Nonetheless, this dried mixture of gases is
deprived of steam (H2O) [13], [7] and [14]. Therefore, the
concentration of the gases can be directly determined from
the volume content of each gas. Hence, the measurement
vector ym is given by

ym =
[
C

CO
C

CO2
C

H2
C

CH4
C

Tar
C

O2
C

N2

]T
. (6)

Mathematically, the nonlinear control-oriented model given
in Eq. (1) and Eq. (3) can be represented in a control-affine
form, i.e,

ẋ = f(x) + g(x)u . (7)

In order to control heating value of a UCG process, an
integral sliding mode control (ISMC) is described in the next
section.

III. INTEGRAL SLIDING MODE CONTROL DESIGN

In this section, a tracking ISMC is designed for the heating
value Hv of the UCG process. Mathematically, this heating
value is computed as

Hv = HCOχCO +HH2
χH2

+HCH4
χCH4

, (8)

where the mole fraction χi is given by

χi =
Ci

C
T

.

Herein, Hi is the heat of combustion of gas i (KJ/mol). For
the control purpose, an integral sliding surface σ is chosen
as follows

σ = e+ ki

∫ t

0

edt, and e = Hv −Hvr , (9)

where ki and Hvr are the integral gain and desired heating
value, respectively. The design of the sliding variable ensures
the exponential convergence of e during an ideal sliding
motion, i.e., σ = 0. The dynamics of the system under sliding
motion is governed by

σ̇ = 0 =⇒ ė+ kie(t) = 0 . (10)

Hence, choosing a strictly positive ki leads to an exponential
convergence in a finite-time. The control input which forces
the system trajectory to the sliding manifold σ = 0 is given
by

u = ueq + κ sgn(σ) , (11)

where ueq is the part of the control input which achieves
σ̇ = 0, and κ ∈ R+ is a discontinuous gain which provides
the required robustness against the modeling imperfections
and external disturbances. The equivalent control input ueq



derived from the nonlinear control-oriented model is given
by

ueq =
L
(
C

T
(C

T
φ+ θ + β)− Ω− a

R1
R1 − a

R2
R2 − 2R3

)
δ + γ

,

(12)

where the intermediate terms in the control law are computed
as follows

φ = kie− Ḣvr ,

Ω = HaCCO
+HbCH2

+HcCCH4
,

θ = R1(Haa1,1 +Hba3,1 +Hca5,1) +R3(Ha +Hb)− βΩ,

a
R1

= a1,1 + a3,1 + a5,1,

a
R2

= 1 + a7,2 .

Proof: Finite-time convergence of sliding mode:

In order to prove the existence of a sliding mode, a positive
definite Lyapunov functional is considered

V =
1

2
σTσ . (13)

Taking time derivative of (13) and using the results
of (9), (11) and (12)

V̇ = σσ̇

= σ
(
−κ sgn(σ) + f(t)

)
≤ −|σ|

(
κ− f0

)
, (14)

where ||f(t)|| ≤ fo is a unknown but norm-bounded input
disturbance or variation in the model parameters. If κ >
fo + τ , where τ ∈ R+, then

V̇ ≤ −τ |σ| (15)

holds, and, hence, a finite-time convergence of sliding mode
is guaranteed [15]. The control law (12) is a function of ρ

coal
,

ρ
char

, Ts and CH2O. As these states are not directly measur-
able, a gain-scheduled modified Utkin observer (GSMUO)
is designed to estimate these unknown states.

IV. GAIN-SCHEDULED MODIFIED UTKIN OBSERVER

Using optimization techniques the nonlinear model ac-
cording to (1) and (3) is approximated by a representation
with a state-dependent system matrix, cf. [16]. The quasi-
linear model of the UCG is given by

ẋ = A(x)x+ bu,

y = Cx , (16)

where x ∈ R11, A(x) ∈ R11×11, b ∈ R11 and C ∈ R7×11.
For the ease of derivation, the state-dependent part in the
system matrix is not shown explicitly. In a conventional
sliding mode observer, it is not trivial to choose switching
gains to enforce sliding mode in finite time. To overcome this
issue, a sliding mode observer extended with an additional
Luenberger-type gain matrix, feeding back the output errors,
is proposed to achieve a robust state re-construction [17].

Consider a possible coordinate transformation x −→ Tcx,
with

Tc =
[
NT

c C
]T

, (17)

where Nc ∈ R4×7 spans the null space of C. The linearized
system in transformed coordinates is given by[

ż
ẏm

]
= TcAT−1

c

[
z
ym

]
+ Tcbu . (18)

According to new coordinates transformation, the unknown
states are

z =
[
ρ

coal
ρ

char
Ts C

H2O

]T
. (19)

The corresponding output matrix is

CT−1
c =

[
04×7 I7×7

]
. (20)

Now, the new system can be partitioned as follows

Tc AT−1
c =

[
A11 A12

A21 A22

]
, and Tc B =

[
b1
b2

]
.

Rewriting the system dynamics leads to

ż = A11z +A12ym + b1u ,

ẏm = A21z +A22ym + b2u . (21)

The structure of the corresponding sliding mode observer is
given by

˙̂z = A11ẑ +A12ŷm + b1u+Lυ −G1ey ,

˙̂ym = A21ẑ +A22ŷm + b2u− υ −G2ey .
(22)

Here, ẑ and ŷm are the state estimates. G1 ∈ R4×7 and
G2 ∈ R7×7 represent the Luenberger type gain matrices and
yield the potential to provide robustness against certain class
of uncertainties, furthermore L ∈ R4×7 is a feedback gain
matrix. The discontinuous vector υ is defined by

υ =


M1 sgn(ŷm,1 − ym,1)

M2 sgn(ŷm,2 − ym,2)

...
M7 sgn(ŷm,7 − ym,7)

 , (23)

with Mi ∈ R+. The nonlinear switching terms guarantee
finite-time convergence. By using (21) and (22), the error
dynamics can be expressed as

˙̂ez = A11êz +A12êy +Lυ −G1ey , (24)
˙̂ey = A21êz +A22êy − υ −G2ey . (25)

where ez = ẑ − z and ey = ŷm − ym. Introducing a new
error variable ēz = ez +L ey , the resultant error dynamics
with respect to the new state variables, ēz and eym

, can be
expressed as[

˙̄ez
ėy

]
=

[
Ā11 Ā12

A21 Ā22

] [
ēz
ey

]
+

[
0
−I

]
υ , (26)



with the submatrices

Ā11 = A11 +LA21 ,

Ā12 = A12 − Ā11L−G1 +L (A22 −G2) ,

Ā22 = A22 −G2 −A21 L . (27)

According to (26), the state reconstruction problem has been
transformed in to a regulation problem in ey and ēz , with υ
as an auxiliary observer input.

Therefore, if L is designed in such a way that the
matrix Ā∗

11 in (28) is Hurwitz, then the error ez converges
asymptotically

A11 +LA21 = Ā∗
11 , (28)

similarly, G2 can be chosen to yield a stable design matrix
Ā∗

22 in

A22 −G2 −A21 L = Ā∗
22 . (29)

The matrices L and G2 are computed using LQR method
which optimally places the eigenvalues of Ā∗

11 and Ā∗
22 in

the complex left hand plane. Finally, G1 in (27) can be
designed in such a way that Ā12 = 0 holds.

V. CONTROL IMPLEMENTATION SCHEME

Fig. 1 illustrates the overall implementation scheme of
the ISMC in combination with a GSMUO. Nevertheless,

L M

G1

G2
ŷm

ym

n

Observer
model

(21) Nc

∫

Sliding Control
inputmanifold

u UCG
process

-

Hv,r

Fig. 1: Control implementation scheme for the UCG process.

a saturation block is included for the contol input to re-
strict negative flow rates. Furthermore, measurement noise
n is introduced in the sensor measurements. Although the
switching input σ in Eq. (11) offers the potential to provide
robustness against certain classes of model uncertainty, it also
introduces chattering, which is addressed by using the tanh

ε
function instead of the sgn function in the implementation.
This results in a real sliding mode within a boundary layer
ε instead of an ideal sliding mode. In short, a sliding
mode is induced in the error associated with the output
vector, whereas the error in the estimates of unknown states
converges asymptotically.

VI. SIMULATION RESULTS

In this section, a simulation analysis for the UCG plant
along with the ISMC and GSMUO is described. In order to
perform a thorough simulation analysis, the following points
are considered in order to have real-time issues:

• An additive white Guassian noise with zero mean and
variance of 0.022 is added in each concentration outputs
Ci of the UCG plant. This variance corresponds to the
typical measurement accuracy of gas analyzers used in
the UCG process.

• In order to study the robustness property of the control
and estimation strategies, parametric uncertainties of
2% are introduced in the nominal system parameters,
namely P, β, ht and Cs. It is worth mentioning that the
integral sliding mode controller as well as the GSMUO
contains the nominal system parameters.

• For the warm-up phase of the underground coal, it
is necessary to burn the coal so that the gasification
process can be successfully started. This situation is
realized by operating the UCG plant in open-loop. For
this purpose, the flow rate of the injected gases is kept
at 2× 10−4 moles/cm2/s.

• The feedback control is activated after 20000s, when
Hv reaches its maximum value.

• The GSMUO is in continuous operation during both the
open-loop and closed-loop operations of UCG plant.

In order to study the estimation behavior of the observer, it is
necessary to initialize both the UCG plant and observer with
different initial conditions. The nonlinear control-oriented
model of UCG process is initialized with the following states

x = [0.5 0 497 0 0 0 0 0 0 4.2e−4 1.6e−3]T . (30)

On the other hand, the GSMUO is initialized with

x̂ = [0.48 0 480 0 0 0 0 0 0 4.2e−4 1.6e−3]T . (31)

As mentioned in Section IV, the observer gain matrices
L and G2 in (28) and (29) are designed using an LQR
formulation. This, on the one hand, allows for specifying
relative weights to the unknown states and measurements.
On the other hand, an optimal gain can be obtained for the
given operating conditions of the quasi-linear model of the
UCG plant. For optimal L, the weighting matrices Q and
R representing the weights for ez and ey in the LQR cost
function are chosen as:

Q = diag(Θ2
1; Θ

2
2; Θ

2
3; Θ

2
4) and

R = diag(Φ2
1; Φ

2
2; Φ

2
3; Φ

2
4; Φ

2
5; Φ

2
6; Φ

2
7). (32)

where Θi and Φi are given as

Θi = ζ

(
θi

z2
i max

)
andΦi =

(
φi

e2y,imax

)
.

The values of the constants θi and φi are chosen in such a
way that the state reconstruction and the measurement error
convergence are sufficiently fast. The value ζ sets the relative
weighting between Q and R. In case of G2, both Q ∈ R7×7
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Fig. 2: Trajectory tracking and error in the heating values.

and R ∈ R7×7 are chosen to facilitate rapid convergence of
ey .

Moreover, the discontinuous gains Mi in (23) need to
satisfy the inequality

Mi > ||(A21)iēz + (Ā22)i + ey||∞, (33)

where i represents the ith row of a matrix.
Fig. 2 shows the trajectory tracking and the correspond-

ing tracking error for the heating value. Therein, both the
ISMC as well as the PI controller are shown. In order to
quantitatively evaluate the performance of both controllers,
the root-mean-square error (RMSE) given by

RMSE =

√√√√ 1

N

N∑
i=1

e(i)2 , e(i) = Hv(i)−Hvr (i) (34)

is computed, where N is the number of samples. The RMSE
for the integral sliding mode control and the PI controller are
0.4674 KJ/mol and 2.3890 KJ/mol, respectively.
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u
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m
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u[ISMC] u[PI]

Fig. 3: Control input.

In Fig. (2b), the tracking error is shown from that time
onwards when the controller is brought into operation. The
control effort for the ISMC and PI control is depicted in
Fig. 3. The comparison of the gas concentration–namely O2,
Tar and CH4–available as measurements and their estimates
provided by the GSMUO is depicted is Fig. 4. Here it can be
clearly seen that the effects of measurement noise are filtered
by the estimator. The estimated solid temperature along with

0 2 4 6 8 10 12
0

1

2

·10−3

t in hr

C
in

m
ol
/c
m

3

C
O

2
Ĉ
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Fig. 4: Actual and estimated concentrations of gases.
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Fig. 5: Estimation of solid temperature.

the true solid temperature from the UCG plant shows a good
agreement in estimation quality, see Fig. 5.

The concentration of measured and estimated gases, i.e.,
CO, CO2, H2 and N2 are shown in Fig. 6. Herein, the
GSMUO also filters out the measurement noise introduced
in the UCG plant.

The densities of coal and char estimated from the GSMUO
also exhibit a good estimation quality, cf. Fig. 7. The steam
concentration is another important candidate for the model-
based control. The actual and the estimated concentrations
of steam in Fig. 8 show a good agreement.

VII. CONCLUSION AND FUTURE OUTLOOK
In this paper, a gain-scheduled nonlinear control-oriented

model of UCG is used to develop an ISMC for the tracking
of desired heating values. To enable feedback control the
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unknown states of UCG plant are reconstructed using the
GSMUO. For a robust state reconstruction, the gain matrices
for the observer are designed using an LQR method and
adapted by gain-scheduling techniques. The simulation re-
sults highlight the effectiveness of the model-based control
and the GSMUO in the presence of parametric uncertainties
as well as measurement noise. This research work serves as
a prototype for the development of model-based control of
complex infinite dimensional process models of UCG and,
subsequently, for the control of field scale UCG processes.
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