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Abstract— In a battery management system (BMS), cell
balancing is an essential function to improve the perfor-
mance and safe operation of batteries. In the literature, the
performance of various cell balancing techniques has been
analyzed by assuming ideal circuit parameters. In this paper,
model-based quantitative analysis of a capacitive active cell
balancing technique with static and dynamic parameters has
been presented. A mean current modeling approach is employed
to describe energy transfers between battery cells for long
charge/discharge operations. The expression of mean current of
cell balancing architecture is derived by considering the actual
circuit parameters and validated with the simulation results.
Moreover, the Kalman filter is designed to estimate the state
of charge (SoC), as the efficacy of any balancing architecture
mainly relies on the accurate estimation of SoC. The impact
of circuit parameters on the performance of the active cell
balancing technique has been investigated by performing a
detailed sensitivity analysis. The results of sensitivity analysis
show that the actual circuit parameters have a significant
impact on the efficiency and balancing time of each technique.
The efficacy of SoC estimator in cell balancing architecture is
also discussed in detail.

I. INTRODUCTION

Lithium-ion cells are affected by imbalances in capac-
ity and state of charge (SoC) when connected in series.
The imbalance is mainly caused either due to the internal
sources (i.e., manufacturing variations, differences in internal
impedances and variations in self discharge rate) or external
sources (i.e., thermal effects) [1]. Various cell balancing ar-
chitectures including passive and active circuits are employed
in literature to overcome this issue [2]. Active balancing
circuits are more efficient and provide fast energy transfer
between cells. Herein, the energy is actively transferred
between cells to get an equilibrium energy level during both
charging and discharging processes. The active balancing
circuits available in the literature differ in terms of energy
storage elements (i.e., inductors, capacitors and transformers)
and their interconnecting architecture [3], [4].

In most of the literature, c.f., [1], [4]–[8], performance
of these techniques is compared by assigning an appropriate
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mark to different parameters like balancing time, circuit com-
plexity, and efficiency, that gives a qualitative indication of
the balancing architecture performance. Since these require-
ments depend on the field of application, selecting an opti-
mal balancing architecture and the most suitable electronic
component parameters pose a great challenge. Therefore, the
analysis conducted in the above literature is not sufficient to
highlight the effectiveness of different proposed solutions.
In this regard, some of the recent literature also covers a
quantitative analysis of active cell balancing techniques. In
[3], the mean average current modeling approach is used to
evaluate the performance of active cell balancing circuits.
The average current models are simplified by ignoring the
static and dynamic parameters of the active cell balancing
architectures. A generalised analytical model is used in [9] to
calculate the performance of various balancing architectures
on the basis of balancing time and energy losses as a function
of efficiency and the initial charge imbalance. However, an
in-depth analysis is required to determine the effect of bal-
ancing circuit parameters and their connecting architecture
on these performance measures.

In any cell balancing technique, an accurate estimation
of SoC has a paramount importance. The available liter-
ature considers coulomb counting (CC) method for SoC
estimation. The CC technique simply integrates the charg-
ing/discharging current to estimate the SoC and is susceptible
to various source of errors. The error is accumulated in
the estimation due to noise in the current measurement,
uncertainty in battery capacity and model parameters, and
the need for accurate knowledge of the initial SoC value
[10], [11]. On the contrary, the Kalman filter based methods
provide an accurate estimation of SoC value in the pres-
ence of measurement noise and uncertainties [12]. To the
best of authors’ knowledge, no literature considers Kalman
filter based SoC estimation in the qualitative or quantitative
analysis of active balancing circuits.

The aim of this paper is to provide a model-based quanti-
tative analysis for the performance evaluation of a capacitive
active cell balancing circuit. In the literature, the analysis
is usually performed by assuming ideal circuit parameters.
However, in this paper, actual static and dynamic parameters
like resistances of cells, switch and energy storage elements,
diode forward voltage drop and dead time have been con-
sidered for analysis. A mean current modeling approach is
employed to describe energy transfers between battery cells
for long charge/discharge operations. Moreover, a Kalman
filter is designed to accurately estimate the SoC of each cell.
Furthermore, sensitivity analysis is performed to assess the
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Fig. 1: Switching capacitor cell-balancing technique

impact of circuit parameters on the performance of the active
cell balancing technique.

The rest of the paper is organised as follows: The capaci-
tive cell balancing circuit model and equivalent circuit model
(ECM) of the cell are presented in Section II. Section III
describes the design of a Kalman filter for SoC estimation. A
discussion then follows on the impact of real circuit elements
on the performance of a capacitive balancing architecture in
Section IV. Finally, the paper is concluded in Section V.

II. MODEL DESCRIPTION

There are numerous capacitor based cell balancing tech-
niques such as switched capacitor (SC), double-tiered ca-
pacitor and flying capacitor configurations. These techniques
employ capacitor as an energy storage element to transfer
the charge between the cells. In the SC architecture, 2n
switches and n − 1 capacitors are required to balance a
battery pack having n series-connected cells. In this paper,
a simple architecture comprising one capacitor and two
series-connected cells is considered to formulate the model
equations, as shown in Fig. 1. These model equations can be
generalized for a n series-connected cells battery pack, as the
transfer of charge among two adjacent cells always require
one capacitor. Moreover, this analysis can be extended to the
other capacitor based cell balancing architectures.

The analysis is performed by considering the internal
resistance (Ro) of the second-order equivalent circuit model
of Lithium-ion batteries (LIB), capacitor parasitic resistance
(Rc), drain-source on-state resistance (Rds) and dynamic pa-
rameters of the switches. The switches (Q1 = Q3 = Q, Q2 =
Q4 = Q̄) are controlled by a simple pulse-width modulation
(PWM) signal having duty cycle (D) and switching period
(T ), as shown in Fig. 2. While VB1 and VB2 represent the
cells having highest and lowest voltages, respectively. The
SC architecture has three operating modes i.e., charging and
discharging modes of the capacitor, and operation during
the dead time (td). During the charging mode, the current
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Fig. 2: Control algorithm for switches

flows from the highest voltage cell VB1 to the capacitor and
it begins to charge. Afterward, td is considered between the
opening of Q1−Q3 and the closing of Q2−Q4 or vice versa
to prevent undesired short circuits amongst the cells. The
discharge mode begins when the switches Q2 and Q4 are
turned on and the capacitor starts to discharge and transfers
the stored charge to the lowest voltage cell VB2 . Under steady
state condition, the voltage across the capacitor during each
mode is given as

vc(t) =


V1, 0 ≤ t ≤ td ,
VB1 +(V1 −VB1)e

−(t−td)/τ , td ≤ t ≤ DT,
V2, DT ≤ t ≤ DT + td ,
VB2 − (VB2 −V2)e−(t−DT−td)/τ , (DT + td)≤ t ≤ T,

(1)

where τ = RC represents the voltage transient time constant
and R is the net resistance of the circuit. During charging and
discharging modes, two switches are included, therefore, R
is characterized as

R = Rc +2Rds +Ro (2)

A. Mean balancing Current

Generally, the transfer of charge between cells occurs at
high rates per second ( f ) with repeated cycles, and the net
transfer of charge by balancing currents in one switching
cycle is negligibly smaller as compared to the charge stored
in battery cells. Thus, the mean averages of current in a
switching period (T ) can be used to represent the current
trajectories. The mean value of capacitor current can be
expressed as

Ĩ =
∆Q
T

=
C
T

∆V, (3)

where ∆V is the voltage ripple and C is the capacitor size.
It is evident in (3) that Ĩ is highest at the maximum ripple



voltage condition for the SC network. The analysis of (1)
shows that the maximum ripple voltage occurs at D = 0.5
and it can be expressed as

∆V = (VB1 −VB2)Tanh
(

0.5T − td
2τ

)
(4)

Hence, the mean current for a single time interval of the
length T/2 becomes

Ĩ =
C
T
(VB1 −VB2)Tanh

(
0.5T − td

2τ

)
(5)

This is the fundamental expression of Ĩ which shows that
the performance of SC network is a function of all parasitic,
static and dynamic parameters. Moreover, it also includes
switching frequency and cell imbalance voltages.

B. Efficiency and Balancing Time

The efficiency and cell balancing time are important
performance metrics of a cell balancing architecture. These
parameters are sensitive to the real conditions of the bal-
ancing network. The percentage efficiency of an active cell
balancing technique is

η =

[
1− P̄losses

P̄in

]
100%, (6)

where P̄in and P̄losses are average input power and average
power losses due to conduction and switching. The conduc-
tion losses during one switching period are

P̄con = 2Ĩ2R (7)

The switching losses during turn-on and turn-off are com-
puted by using the piece-wise linear functions shown in
Fig. 3. The switching losses of switch Q1 due to rise time
and fall time are

Psw1t r =
∫ 0.3tr

0.2tr

(
0.1VB1 −VB1

0.1tr
(t −0.2tr)+VB1

) (
0.7I2

0.1tr
(t −0.2tr)

)
dt

+
∫ tr

0.3tr

(
0.009VB1 −0.1VB1

0.7tr
(t −0.3tr)+0.1VB1

)(
I2 −0.7I2

0.7tr
(t −0.3tr)

)
dt, (8)

Psw1t f =
∫ 0.1t f

0

(
0.9VB1 −0.009VB1

0.1t f
t +0.009VB1

) (
0.7I1 − I1

0.1t f
t + I1

)
dt

+
∫ t f

0.1t f

(
V B1 −0.9VB1

0.9t f
(t −0.1t f )+0.9VB1

)(
−0.7I1

0.9t f
(t −0.1t f )+0.7I1

)
dt, (9)

where I1 and I2 can be found by using (1), and it is given
as

I1 =
VB1 −VB2

R

 1

1+ exp
(

DT − td
τ

)
 ,

I2 =
VB1 −VB2

R

 exp
(

DT − td
τ

)
1+ exp

(
DT − td

τ

)
 . (10)

Similarly, the switching losses for other switches due to
rise time and fall time are computed.

C. Equivalent Circuit Model of the Battery Cell

The second order Randle model of [13] is selected to
represent the equivalent circuit of the cell. The circuit dia-
gram is shown in Fig. 4. The mathematical model is adapted
from [13], [14] and is represented as

ẋ = Ax+Bi+w(t),

vt =Cx+Di+ vOC0 +ϕ(t), (11)

where x ∈ ℜ3 represents the state vector, A ∈ ℜ3×3 is the
system matrix, B ∈ ℜ3 is the input matrix, i is the charging
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Fig. 3: Piece-wise function of Q1 during switching period



Fig. 4: Equivalent circuit of the cell.

or discharging input current, vt is the terminal voltage
representing the output of the cell, vOC0 is the value of the
open circuit voltage vOC at zero state of charge (SoC), C
is the output matrix, D is the direct transition matrix, and
w(t) and ϕ(t) represent the process and measurement noises,
respectively.

The components of the state space model in (11) are given
as

x =
[
v1 v2 SoC

]T
,

A =


− 1

R1C1
0 0

0 − 1
R2C2

0

0 0 0

 ,

B =

[
1

C1

1
C2

− 1
ζ

]T

,

C =
[
−1 −1 m

]
,

D =−R0,

where vi, Ri, Ci, i = {1,2} are the voltage, resistance and
capacitance of the RC networks of the equivalent circuit
shown in Fig. 4, respectively, ζ is the nominal capacity of
the cell, m is the slope of vOC and SoC curve, and R0 is the
internal resistance of the cell.

III. SOC ESTIMATOR

The cell model given in (11) is employed to design the
discrete time Kalman Filter (DKF) for estimating SoC. The
first step is to discretize (11) with sampling time dt to yield

xk = Fk−1 +Gik−1 +wk−1,

yk =Ck +Dik +φk, (12)

where F = I3 + dtA, G = dtB, yk = vt − vOC0 and wk and
φk are white, zero-mean, uncorrelated noise processes with
known covariance matrices Qk and Rk, respectively, which
are characterized as (cf. [15])

wk ∼ (0,Qk) , vk ∼ (0,Rk) , E
[
wkwT

j
]
= Qkδk− j

E
[
vkvT

j
]
= Rkδk− j, E

[
vkwT

j
]
= 0,

where the kronecker delta function δk− j = 1 if k = j and
δk− j = 0 if k ̸= j.

The steps involved in the implementation of DKF are
presented in algorithm 1.

Algorithm 1 Discrete time Kalman Filter Implementation

1: Initialize: The state vector (x̂) and estimation error
covariance matrix (P ∈ ℜ3×3) of the DKF are initialized
at k = 0 as

x̂+0 = E (x0) ,

P+
0 = E

[(
x0 − x̂+0

)(
x0 − x̂+0

)T
]
, (13)

where + denotes the posteriori estimate, which takes into
account the current measurement, and E represents the
expected value.

2: Predict and Update: For k = 1,2, . . ., the DKF predicts
and subsequently corrects/updates the states based on the
current measurement as follows
a. Predict: The gain of the DKF K, P and x̂ are predicted

by the following set of equations

P−
k = Fk−1P+

k−1FT
k−1 +Qk−1,

K−
k = P−

k CT
k
(
CP−

k CT +Rk
)−1

,

x̂−k = Fk−1x̂+k−1 +Gik−1, (14)

where − denotes the a-prior estimate, which does not
depend on the current measurement

b. Update: By using the current measurement x̂ and P
are updated as

x̂+k = x̂−k +Kk
[
yk −

(
Ckx̂−k +Dik

)]
,

P+
k = (I5 −KkC)P−

k (I5 −KkC)T +KkRkKT
k . (15)

IV. RESULTS AND DISCUSSION

In this section, simulation results are presented to show
the impact of real conditions on the performance of the
balancing architecture. The practical scenario is presented
by incorporating the following practical considerations.

• 4.4-Ah Boston Power Sonata cells are considered and
the main characteristic parameters of cells are given in
Table I.

• The static parameters like resistances of energy storage
elements, switches and battery cells are considered.

• The dynamic parameters in the form of dead time, rise
time and fall time are also included.

• An affine approximation of the SoC vs OCV curve is
used for the linear model of the cell, cf. 11. Where the
parameter m = 0.0051 and vOC0 = 3.6971.

• The imbalance in battery cells is presented by consid-
ering distinct SoC for each cell.

• The noises are considered during the simulation study to
investigate their impact on the performance of the SoC
estimator. These noises are classified into the process
noise (w) and measurement noise (φ ). The zero-mean
Gaussian white noise with a variance of 10−2 is assumed
for both process and measurement noises.

The implementation of the proposed scheme is shown in
Fig. 5. To investigate the impact of static and dynamic param-
eters on the performance of the SC architecture, a real time
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TABLE I: List of Parameters

Parameters of Boston Power Sonata 4400 cell (cf. [14]).
ζ 4.4 Ah R1 18.6 mΩ

R2 4 mΩ C1 69.176×103 F
C2 138 F Ro 44.1 mΩ

Parameters used in the balancing architecture.
Qi 5.3 mΩ C 47 µ F
Rc 10 mΩ f 50 kHz
td 2 µs Rds 5.3mΩ

tr 72 ns t f 8 ns

scenario is incorporated by considering that two cells are
imbalanced by 300mV and their voltages are 4.0V and 3.7V ,
respectively. The parameters of cell balancing architecture
are shown in Table I. The impact of real parameters on the
performance of the cell balancing architecture is determined
by computing the deviation of η and Ĩ from the ideal values.
The percentage changes ∆η% and ∆Ĩ% are computed as

∆η% =
η(Real)−η(Ideal)

η(Ideal)
, (16)

∆Ĩ% =
Ĩ(Real)− Ĩ(Ideal)

Ĩ(Ideal)
, (17)

where η(Real) and η(Ideal) are the efficiency of real and
ideal networks, respectively. While Ĩ(Real) and Ĩ(Ideal) are
the average currents of real and ideal circuits, respectively.
In Fig. 6a, it is evident that the average current reduces
with the increase in parasitic and on-state resistances of
switches. Moreover, the dead time also affects the average
current and a significant deviation can be observed from
the ideal scenario at large values of resistances. The dead
time reduces the effective duty cycle which leads to the
reduction of balancing current, so it slows down the cell
balancing speed. Similarly, the deviation of efficiency from
the ideal balancing network is observed in Fig. 6b. The effect
of dynamic parameters like rise time (trise) and fall time
(t f all) on the efficiency of the SC network is also investigated.
The switching losses increase with the increase in rise and
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Fig. 6: Effect of static and dynamic parameters on the
performance of SC balancing architecture

fall times, resulting in a low efficiency at higher values of
switching time, as shown in Fig. 6c.

The speed of cell balancing is another important perfor-
mance metric of a cell balancing architecture. A DKF is
designed for the estimation of the SoC of each battery cell
to determine the performance of a cell balancing architecture.
The process and measurement noises are considered in the
balancing currents and the terminal voltages of battery cells,
respectively.

To show the effectiveness of the estimation, the battery
cells and the DKFs are initialized with different initial
conditions. The discharging cell (cell 1) and its estimator
are initialized as

x(0) =
[
0 0 80

]T
, x̂0 =

[
0 0 85

]T
,

where as the other cell (cell 2), which is being charged and
its estimator are assigned following initial condition vectors

x(0) =
[
0 0 60

]T
, x̂0 =

[
0 0 55

]T
.

It can be seen from Fig. 7 that the DKFs quickly converge to
the true values of SoC. The superiority of DKF as compared
to the CC method is also presented in Fig. 7. It can be
observed that the CC method fails to give the correct estimate
in case of unknown initial condition. On the contrary, the
DKF yields an accurate estimation of the SoC in the presence
of process and measurement noises. For the tuning of the
DKF, Q = diag{0,0,0} and R = 10−1.

The designed DKFs are integrated with the cell balancing
architecture to investigate the impact of real conditions on
the performance of the balancing architecture. The impact
of static and dynamic parameters is also evident in the cell
balancing speed, as shown in Fig. 8. The simulation results
show that the convergence time of SoC and OCV is higher
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in non-ideal conditions. Thus, the cell balancing speed is low
in a practical balancing architecture as compared to the ideal
network. These results show that the real conditions of the
cell balancing network have a significant impact on the cell
balancing efficiency and time.
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V. CONCLUSION

In this manuscript, a capacitive cell balancing architecture
is analyzed by considering real conditions. A mean current
model has been formulated to perform the sensitivity anal-
ysis. It is observed that the efficiency and cell balancing
speed are sensitive to the real parameters like resistances
of switches, cell and parasitic components. The dynamic
parameters such as rise time, fall time and dead time also
affect the performance of the cell balancing architecture.
Moreover, it has been shown that an accurate SoC estimator
is essential to determine the cell balancing time. It has been
shown that the Kalman filter results are better as compared
to Coulomb counting method.

One of the possible extensions of the current work is
the development of the nonlinear equivalent circuit model
based SoC estimation algorithm, which can account for
the dependence of cell parameters on SoC and operating
temperature. Moreover, SC based balancing architecture can

be compared with inductor and transformer based balancing
architectures.
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