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ABSTRACT

The control design of a non-linear and infinite dimensional underground coal ga-
sication (UCG) process is a challenging task. As the process takes place in-situ,
and no physical insight is available, so it is either very expensive or difficult to
measure all the essential process parameters, which further complicates the control
design. In this paper, a robust neuro-adaptive sliding mode control (NASMC) algo-
rithm is designed for an infinite dimensional model of the UCG process in order to
maintain a desired constant heating value. The unknown model parameters used in
the controller design are estimated using the feed forward neural network (FFNN).
Moreover, the controller also requires time derivatives of the measured model pa-
rameters, which are estimated by uniform robust exact differentiator (URED). As
the relative degree of the process output with respect to the input is zero, therefore,
in order to apply the SMC approach, the relative degree is increased to one. Con-
sequently, the control input bears a time derivative which is needed to be filtered
once given to the plant. This approach maintains the output at the desired level
and provides insensitivity to input disturbance and model uncertainties. A compar-
ison is also made between NASMC and an already designed conventional SMC. The
simulation results show that NASMC exhibits better performance as compared to
the conservative SMC design.

KEYWORDS

Relative degree, neuro-adaptive sliding mode control (NASMC), feed forward
neural network (FFNN), uniform robust exact differentiator (URED), underground
coal gasification (UCG) and energy conversion systems

1. Introduction

Coal plays a pivotal role in fulfilling the world’s energy requirements. Moreover, it is
the leading fuel for electricity production and its consumption is increased by 25 million
tonnes of oil equivalent (mtoe) since 2013 (Petroleum, 2018). Coal can be chemically
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converted into useful synthetic gas (syngas) either by gasifiying it on the surface or by
utilizing the underground coal gasification (UCG) technology. In surface gasification
a number of steps are involved which mainly include, mining and purification of coal,
followed by its gasification in specially designed chambers to produce synthesis or
syngas (Bell et al., 2011). On the other hand, UCG produces syngas at low to medium
heating value by gasifying the coal in-situ. Thus, UCG turns into the main choice
for low rank coal (heating value less than 12 MJ/kg) (Van der Riet, 2008), which is
monetarily infeasible for mining.

The process of UCG starts by drilling injection and production wells, which are
directly perforated into the coal seam, trailed by the establishment of a permeable
channel between the wells. Prior to the gasification process, the coal seam is kindled
to set the initial dissemination for the reactors temperature, which is very important in
the success of the UCG process. The oxidants (air and steam (H2O(g)) or Oxygen (O2)
or only air) are injected via the injection well into the coal seam, which chemically react
with already kindled coal to produce syngas which is collected from the production
well. The syngas is normally a mixture of hydrogen (H2), carbon monoxide (CO),
methane (CH4) and traces of higher hydrocarbons (CnHm), which can be used as a
major source for power generation, industrial heating and for the production of liquid
fuels (Khadse et al., 2006; Perkins, 2005).

In order to increase the efficiency of a UCG process, a control system can be de-
signed, which is capable of maintaining heating value of the product gases at the desired
level for a longer period of time (Uppal et al., 2014). In literature both model-free and
model-based control strategies have been explored for the UCG process. In (Kostúr
and Kačúr, 2008; Kostur and Kacur, 2011, 2017), different model-free control tech-
niques have been implemented on a lab scale UCG process to control heating value
and composition of product gases, and other important parameters of the process.
However, the control of actual UCG process is a formidable task, especially consider-
ing the unavailability of the measurements of some essential model parameters. Since
UCG process takes place underground and no physical insight is available, so it is very
expensive and difficult to measure the necessary model parameters of the process by
installing sensors at different locations of the reactor. The only available measurements
of the whole process are the flow rate and composition of the product gas mixture. In
this scenario a detailed model of the UCG process is of paramount importance for the
analysis and control of UCG process (Uppal, 2016).

The model-based control heavily relies on the selection of a suitable mathematical
model of the process. There is always a trade-off between the accuracy of the model and
ease of the controller design (Uppal, 2016). Owing to their complex dynamics, most of
the available UCG models can not be employed for the model-based control easily. Two
control-oriented models of UCG have been reported in the literature. A simplified non-
linear ODEs based model (Arshad et al., 2012), derived from (Thorsness and Rozsa,
1978) and (Winslow, 1977). The model ignores the dynamics of the process with
respect to length of the reactor. The simplified model is used to design a conventional
sliding mode control (SMC), cf. (Arshad et al., 2012), an integral SMC, cf. (Uppal
et al., 2018b) and a dynamic integral SMC, cf. (Uppal et al., 2019) to keep the heating
value at the desired level. In (Arshad et al., 2012) it has been assumed that all the state
variables are available for controller design, which is practically impossible. Therefore,
in (Uppal et al., 2018b, 2019), a gain-scheduled modified Utkin observer is designed
to reconstruct the unknown states, followed by integral and dynamic integral SMC
designs, respectively. In (Chaudhry et al., 2018), the model of (Arshad et al., 2012)
is linearized around an operating point of interest. The model is then employed to
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design a robust multi-objective H2/H∞ controller for maintaining a desired level of the
heating value. Another control-oriented model of UCG has been proposed in (Uppal
et al., 2014), which is based on the model of (Thorsness and Rozsa, 1978). The model
gives a better representation of the UCG process as compared to the model in (Arshad
et al., 2012). The infinite dimensional, pseudo-steady state model is comprised of
PDEs for solids and space dependent ODEs for gases. Two different control techniques
have been designed for the model, a super-twisting based SMC, cf. (Uppal et al.,
2015) and a conventional SMC, cf. (Uppal et al., 2018a). The gains for both the
controllers are computed by finding the upper bounds of the unknown functions of the
model in (Uppal et al., 2014), by using rigorous simulation study. In order to avoid
a conservative control design cf. (Uppal et al., 2018a, 2015), it is more convenient
to estimate the important model parameters utilizing the available measurements.
For such purpose many parameter estimation techniques are available. However, for
a complex and highly nonlinear UCG process, the artificial neural networks (ANNs)
based parameter estimation technique, cf. (Bhatti et al., 1996; Chauhan and Singh,
2017; Hagan et al., 2002; Khan and Akmeliawati, 2017; Rostami et al., 2018) becomes
a suitable candidate.

The integration of ANNs and sliding modes has been considered in diverse modeling
and control contexts, cf. (Chairez et al., 2006; Ertugrul and Kaynak, 2000; Nied et al.,
2007). Much of such approaches reported a class of pseudo robust-adaptive controller
which has not been clearly motivated, cf. (and and, 2002; Bari et al., 2005; Bouhali
and Boudjedir, 2011; PARMA et al., 1999). The application of the controller proposed
in this study considers a different application of the ANNs as part of a sliding mode
controller for an Underground Coal Gasification Energy Conversion Process. In this
case, the time-derivative of the sliding surface depends on some uncertain terms which
are functionally connected with some measurable inputs at the border of the spatial
domain of the conversion process. This functional relationship is approximated with
a suitable ANN which is substituted into the control design. Moreover, the proposed
approximation relaxes some modeling assumptions used in the regular model of the
process that must be controlled.

Therefore, in this work the model of (Uppal et al., 2014) is employed to estimate
the unknown parameters, which are nonlinear functions of measured and unmeasured
system variables, using the feed-forward neural network (FFNN). The parameters
are then used for designing SMC for maintaining the desired heating value. Conse-
quently, the neuro-adaptive sliding mode control (NASMC) yields less conservative
controller gains, improving the performance of the closed loop system. Moreover, the
robustness is also improved by estimating these non-linear functions along with relax-
ation of these functions to be bounded (Rostami et al., 2018). The unknown model
parameters are also dependent on time derivatives of the measured concentrations.
It has been observed that the time differentiation of discrete samples of measured
data is ”utmost important ” problem. The trade-off between exactness and robust-
ness with respect to the input sampling data and noise is the major issue in time
differentiator design (Cruz-Zavala et al., 2011). Also, the draw back of traditional
differentiators, used in many applications, is the asymptotic convergence, when the
norm of initial conditions of the differentiation error grows unboundedly. Therefore,
to overcome this problem, the design of such a differentiator is required, which con-
verges exactly and robustly in a finite time, independent of initial differentiator error
and despite of bounded uncertainties. One such differentiator is the uniform robust
exact differentiator (URED) (Cruz-Zavala et al., 2011). After estimating the unknown
model parameters using measurements and their time derivatives, NASMC is designed.
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The simulation results show that NASMC yields better performance in the presence
of modeling uncertainties and external disturbance as compared to the SMC design
in (Uppal et al., 2018a).

This study provides a novel adaptive compensated sliding mode controller for a class
of underground coal gasification energy conversion process. The selected combination
of sliding mode control and the adaptive estimation based on ANN enforces the output
value of the system to track reference values, which can be obtained as a result of
precise estimation of the unknown parameters as well as their derivatives, which are
estimated with the application of a set of robust differentiators. The realization of
this controller also uses a synthetic increment of the relative degree of the sliding
surface with respect to the controller, which provides a smoother variation of the
control approach. The outcomes of this study demonstrate that the application of the
adaptive compensated controller may produce a regulated composition of the energetic
process.

The remainder of this paper is structured as follows: In Section 2 the problem state-
ment and the control-oriented model is developed with the help of certain assumptions.
The design of NASMC and the non-linear parameter estimation using NN technique
are demonstrated in Section 3 and 4 respectively. In Section 5 numerical solution of
the closed loop system is explained. Section 6 presents the simulations results, and
this paper is concluded in Section 7.

2. Mathematical Model of UCG Process

In this work 1D packed bed model of (Uppal et al., 2014) is employed to design the
NASMC for the UCG process. The schematic of the process is shown in Fig. 1.

 Surface

 Water table

Over burden

Coal seam

Under burden

Injection well Production well

Air flowrate Product gases

x=0 x=LL

Figure 1. Schematic of UCG process (Uppal et al., 2014)

The mass and energy balances of coal and char are modeled as 1D PDEs in time
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and space, which are given as

∂ρ1
∂t

= −M1R1, (1)

ρ1 (0, x) = ρ10
(x), 0 ≤ x ≤ L,

∂ρ2
∂t

= M2

(

as2,1R1 −R2(u)−R3(u)
)

, (2)

ρ2 (0, x) = ρ20
(x), 0 ≤ x ≤ L,

∂Ts

∂t
=

∂

∂x

(

(1− ϕ)k
∂Ts

∂x

)

+ h(Tg − Ts)−
∑3

j=1 qjRj

(cp1ρ1 + cp2ρ2)
, (3)

Ts (0, x) = Ts0(x), 0 ≤ x ≤ L,

∂Ts

∂x
(t, 0) =

∂Ts

∂x
(t, L) = 0, t ≥ 0.

The description of the model parameters is given in Table. 1.
Due to pseudo steady-state assumption, the mass and energy balances of the gases

are represented by ODEs in length domain

dCi

dx
=

1

vg
(−Ci

dvg
dx

+

3
∑

j=1

asijRj), (4)

Ci(x = 0) =
[

0 0 0 0 0.79 u
vg0

0.21 u
vg0

0 δ
vg0

]T
,

dTg

dx
= −

h

vgCg
(Tg − Ts), (5)

Tg(x = 0) = Tg0 ,

dP

dx
= −

vgµ

2K
, (6)

P (x = 0) = P0,

dvg
dx

= −
vg
P

dP

dx
+

vg
Tg

dTg

dx
+

RTg

P

8
∑

i=1

3
∑

j=1

asijRj, (7)

vg(x = 0) = vg0 .

where Ci, i ∈ {1, . . . , 8} represents the concentration of CO, CO2, H2, CH4, N2,
O2, Tar and H2O within the UCG reactor.

According to (Uppal et al., 2014), the chemical kinetics of the process is mainly
governed by three chemical reactions, which are given in Table. 2. The rates of the
chemical reactions are expressed as
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Table 1. LIST Of SYMBOLS

Sr.# Symbol Description

1. ρ1, ρ2 densities of coal and char (g/cm3)
2. M1, M2 Molecular weights of coal and char (g/mol)
3. asi,j , ai,j Stoichiometric coefficients of solids and gases

solid in jth reaction
4. Rj Rate of jth chemical reaction (mol/cm3/s)
5. Ts, Tg Solid and gas temperatures (K)
6. ϕ Porosity of coal bed
7. k Effective thermal conductivity of solids (cal/cm/s/K)
8. h Heat transfer coefficient (cal/s/K/cm3)
9. Cs Total solid phase heat capacity (cal/K/cm3)
10. Cg Total gas phase heat capacity (cal/mol/K)
11. qi Heat of ith reaction (cal/mol)
12. P, vg Pressure (atm) and gas velocity (cm/s)
13. Hg Gas phase heat source (J/s/cm3)
14. K, µ Gas permeability (cm2) and viscosity (Pa.s)
15. R Universal gas constant (cm3atm/mol/K)
16. L Reactor length 2500 cm
17. ky Mass transfer coefficient (mol/cm3/s)
18. u Input air flow rate (mol/cm2/s)
19. δ flow rate of steam (mol/cm2/s)
20. Hv Heating Value of gases (KJ/mol3)
21. Ci Concentration of ith gas (mol/cm3)

R1 = 5
ρ1
M1

exp

(

−6039

Ts

)

, (8)

R2 =
Rc2kyyO2

Rc2 + kyyO2

, (9)

Rc2 =

9.55 × 108ρ2yO2
P exp

(

−22142

Ts

)

Ts
−0.5

M2
,

R3 =
Rc3kyyH2O

Rc3 + kyyH2O

, (10)

Rc3 =
Rc3

+

y
H2O

(

y
H2O

−
y

CO
y

H2

KE3

)

,

Rc3
+ =

ρ2y
2
H2O

P 2 exp
(

5.052 − 12908
T̃

)

M2

(

y
H2O

P + exp
(

−22.216 + 24880
T̃

))2 .

where y
O2
, y

H2O
, y

CO
and y

H2
are internal molar fractions of O2, H2O, CO and H2O

along x respectively. The internal molar fraction of the gas i is computed as
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yi =
Ci

CT
,

CT =

8
∑

i=1

Ci.

Table 2. Chemical reactions considered in the model

Sr Chemical equations

1. Pyrolysis

CHaOb
R1
−−→ as2,1CHāOb̄ + a1,1CO + a2,1CO2 + a3,1H2

+a4,1H2O + a5,1CH4 + a8,1C9Hc

2. Char Oxidation

CHāOb̄ + a7,2O2

R2
−−→ a2,2CO2 + a4,2H2O

3. Steam gasification

CHāOb̄ + a4,3H2O
R3
←−→ a1,3CO + a3,3H2

CHaOb, CHāOb̄ and C9Hcin Table. 2 represent molecular formulas for coal, char
and Tar respectively.

As shown in Fig. 1, air at particular flow-rate enters the injection well (x = 0), and
the product gases are recovered from the production well (x = L). After the removal
of H2O, the gas mixture is sent to the gas analyzer, where the concentration of the
gases is measured. Based on the measurement, the percentage volumetric content
(molar fraction) of the gases (except H2O) is computed (Uppal et al., 2014). Hence,
the measurement vector ~ym is given by

~ym =
[

C
CO
(L)C

CO2
(L)C

H2
(L)C

CH4
(L)

C
N2
(L)C

O2
(L)C

Tar
(L)

]T
.

(11)

The heating value is calculated as

Hv = H
CO
Ω

CO
+H

H2
Ω

H2
+H

CH4
Ω

CH4
+H

Tar
Ω

Tar
, (12)

where Hi, i ∈ {CO,H2,CH4,CnHm} is the combustion heat (KJ/mol) of gas i, CnHm

represents higher hydrocarbons and Ωi is the molar fraction of the gases, charaterized
by the ratio

Ωi = 100
Ci(x)

C
m
(x)

∣

∣

∣

∣

∣

x=L

,

Cm =

7
∑

j=1

~ym(j).
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where Cm is the sum of concentration of all the gases (except H2O). It is pertinent to
mention that Tar is a pseudo specie, introduced to balance the coal pyrolysis reaction.
It also accounts for the higher hydrocarbons, which actually contribute in Hv.

The controller design for maintaining a desired level of Hv is discussed in the sub-
sequent section.

3. Controller Design

To maintain Hv at a desired constant level (Hvr) a simple sliding surface is selected

s = Hvr −Hv. (13)

After the establishment of sliding mode s = 0, the desired objective (Hv = Hvr) can
be achieved.

Before designing the control input u, which enforces the sliding mode in the manifold
s = 0, it is important to investigate the relationship between Hv and the input u. In
order to simplify the controller design it is assumed that the gas velocity vg is constant
along x (Uppal et al., 2018a). As N2 is an inert gas, so it doesn’t participate in any
chemical reaction. Therefore, according to Eq. (4) C

N2
(x = L) = C

N2
(x = 0) = 0.79 u

vg0
and Hv can be rewritten as

Hv = 100
N

D + 0.79 u
vg0

, (14)

N = H
CO

C
CO

+H
H2
C

H2
+H

CH4
C

CH4
+H

Tar
C

Tar

∣

∣

∣

x=L
,

D = C
CO

+ C
CO2

+ C
H2

+ C
CH4

+ C
O2

+ C
Tar

∣

∣

∣

x=L
.

As the relative degree of Hv and hence s with respect to u is zero, so the trivial
control design is not an appropriate option. To solve this problem, we try to enforce
sliding mode and inserting integrator in the input, such that u̇ = µ. The time derivative
of sliding variable s is

ṡ = Ḣvr − Ḣv. (15)

Taking time derivative of Eq. (14) and using Ḣvr = 0 (desired value is constant),
Eq. (15) becomes

ṡ = θ + φµ, (16)

θ = 100
NḊ − Ṅ (D + αu)

(D + αu)2
,

φ = 100
Nα

(D + αu)2
,
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where α = 0.79
vg0

is a constant.

Here, it is important to discuss the parameters θ = θ0 + ∆θ and φ = φ0 + ∆φ,
where ||∆θ|| ≤ Θ ∈ R

+ and ||∆φ|| ≤ Φ ∈ R
+ are uncertain but bounded terms.

The uncertainties in θ and φ originate due the assumptions considered in this work,
which include constant gas velocity (the actual gas velocity is given by Eq. (7) ) and
assuming that Tar only accounts for the higher-hydrocarbons. Moreover, the model
limitations discussed in (Uppal et al., 2014) also add to the uncertainties in θ and φ.

The sliding mode is enforced in finite time by considering the following reaching law

ṡ = −K sign(s), (17)

where K ∈ R
+ is the discontinuous sliding mode gain.

The comparison of Eqs.(16) and 17 results in following control law

u̇ = −
1

φ

(

θ +K sign(s)
)

(18)

3.1. Existence of Sliding Mode

For the stability and existence of sliding mode in the presence of input disturbance, a
positive definite Lyapunov function is selected

V =
1

2
s2. (19)

The time derivative of the Lyapunov function is given as

V̇ = sṡ,

= s
(

θ + φu̇+ βδ̇
)

,

= s
(

−K sign(s) + βδ̇
)

,

≤ −|s|
(

K − BΠ
)

, (20)

where ||β|| ≤ B and ||δ̇|| ≤ Π.
Now, if K > κ+ BΩ with κ > 0, then the time derivative of the Lyapunov function

becomes negative definite

V̇ ≤ −κ|s|, (21)

and sliding mode exists in finite time (Edwards and Spurgeon, 1998).
After the enforcement of the sliding mode s = 0 in finite time, the PDES in Eqs. (1)–

(3) constitute the zero dynamics of the process. It has been already proved in (Uppal
et al., 2018a) that the zero dynamics is bounded. Therefore, the control design is
possible.
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From Eq. (18) it is evident that controller utilizes the terms θ and φ despite they are
uncertain. It is discussed in the subsequent section that these parameters are estimated
using FFNN.

4. NN based non-linear Parameter estimation

In order to formulate the target values of θ and φ, the time derivatives of the elements of
~ym (except CN2

(L)), cf. Eq. (11) are required, which are computed by designing URED
for each concentration of gas. URED is designed particularly to estimate the robust
and exact time derivatives as compared to the traditional differentiation approach.
The detailed description of the design process of URED for concentrations of gases is
explained in the following subsection.

4.1. URED design for concentration of gases

Consider the input signal Ci to be differentiated, with ς0 = Ci and ς1 = Ċi representing
states of the second order system

ς̇0 = ς1,

ς̇1 = C̈i.

To construct an URED with a prescribed finite time convergence, independent of
the initial conditions, which gives a robust estimation of Ċi, by using only the mea-
surement of input signal Ci, following method is adopted. Let σ0 = z0 − ς0 be the
difference between the estimated and actual value of the signal to be differentiated,
respectively. Now by using generalized super twisting algorithm (GSTA) the following
representation is obtain for URED scheme

ż0 = −k1ξ1(σ0) + z1,

ż1 = −k2ξ2(σ0), (22)

where, z0 and z1 are the estimates of Ci and Ċi respectively, k1, k2 ∈ R
+ are the

gains to be designed and the functions ξ1 and ξ2 are given by

ξ1(σ0) =| σ0 |
1/2 sign(σ0) + µ | σ0 |

3/2 sign(σ0),

ξ2(σ0) =
1

2
sign(σ0) + 2µσ0 +

3

2
µ2 | σ0 |

2 sign(σ0),

where µ ≥ 0 is a scalar.
The system given by Eq. (22), representing the URED is implemented in MATLAB

by using the following difference equations
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z0(t+ dt) = z0(t) +
(

−k1ξ1(σ0) + z1(t)
)

dt,

z1(t+ dt) = z1(t) +
(

−k2ξ2(σ0)
)

dt,

where dt is sampling time of the numerical solution.

4.1.1. URED Simulation Results

For simulations, k1 = 5e− 5, k2 = 1e− 9, µ = 4e− 5 and zT (0) = [0 0]. The URED
results for the time derivatives of the concentrations of CO,CO2,H2,CH4,O2,Tar at
x = L are shown in Fig. 2 Moreover, a comparison is also carried out between the
time derivatives obtained from URED and MATLAB. It can be seen from the results
that response of URED is very smooth as compared to the time derivatives obtained
from Simulink.

4.2. Parameter Estimation Using Multilayer Feed-Forward NN

For the function estimation problem in NN, the training set includes one or more ex-
planatory variables (independent variables) and a set of response variables (dependent
variables). Therefore, the NN learns to create a mapping between response variables
and explanatory variables, cf. (Rostami et al., 2018) and (Gautam, 2016). Because
the mapping between θ or φ and the concentration of gases is highly non-linear, so a
multilayer perceptron (MLP) NN is needed to learn the non-linear mapping. One such
technique is multilayer feed-forward neural network (MLFFNN), cf. (Bhatti et al.,
1996) and (Ghunem et al., 2012).

It is a reality that the MLP NN with one hidden layer can be efficient for any
particular non-linear estimation problem. Therefore, the MLFFNN with one hidden
layer is proposed with the schematic diagram of θ and φ shown in Fig. 3.

The input to the network are the concentrations of CO,CO2,H2,CH4,O2,Tar and
airflow rate u. The samples in the input layer being multiplied by scalar weighted
connections are sent to hidden layer. The hidden layer computes its net activation as

aj =

l0
∑

i=1

wji pi + bjo, (23)

where i = 1, 2, . . . , l0 and j = 1, 2, . . . , h0, l0 and j0 represent the number of inputs
to the hidden layer and the hidden layer nodes, respectively, pi is the input of the
input node i, wji is a scalar called weight between the ith input layer node and jth

hidden layer node and bjo is the respective reconstruction error or bias. The output of
the hidden layer is given by

yj = f(aj), (24)

where f is the activation function. According to (Bhatti et al., 1996; Rostami et al.,
2018), the commonly used activation functions f in practice are: Linear function a = n,
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CH4

0 200 400 600 800 1000 1200 1400 1600 1800

t in s

-5

-4

-3

-2

-1

0

1

2

3

4

5

Ċ
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block and URED.
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Figure 3. Schematic diagram of MLFFNN for θ or φ estimation

Log-sigmoid function a = 1
1+e−n and Hyperbolic-tangent sigmoid function a = en−e−n

en+e−n ,
where n is the number of inputs.

The output layer computes its net activation as follow

ak =

h0
∑

j=1

wkj yj + bk1, k = 1, (25)

where wkj is a scalar called weight between the kth output layer node and jth hidden
layer node. The output layer produces an output as a function of its net activation as
follows

zk = f(ak). (26)

The output of the estimated model can be expressed as the function of the inputs, the
weights between input and hidden layer and the weights between the hidden and the
output layer as described by

zk = f(

h0
∑

j=1

wkjf(

l0
∑

i=1

wji pi + bjo) + bk1). (27)

For two layer FFNN as shown in Fig.3, consider l1 and l2 are the number of neurons
in layer1 and layer2, respectively. So the above equation can also be presented in the
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vectors form

zk = f (W2{f(W1p̄+ b1)}+ b2) , (28)

where p̄ ∈ ℜl1×Ts , W1 ∈ ℜl1×l0 , b1 ∈ ℜl1 , W2 ∈ ℜl2×l1 , and b2 ∈ ℜl2 , Ts is the number
of input data samples, p̄ is the input vector. Same MLFNN architecture is used for
both θ and φ as shown in Fig. 3 with different hidden layer neurons for obtaining the
desired outputs. The Tangent-hyperbolic function is used as a non-linear activation
function in the hidden layer, whereas, a linear function is used in the output layer.
Depending on the choice of the activation functions the Eq. (28) can be rewritten as

zk = (W2tanh{(W1p̄+ b1)}+ b2) . (29)

After the selection of the network structure, the network training is done by minimizing
the cost function, which is a function of network weights. The cost function is generally
characterized as

J(wji, wkj) =
1

2

h0
∑

i=1

(tk − zk)
2, (30)

where tk is the target output at the kth output node and J(wji, wkj) is the mean
square error (MSE).

Several optimization methods are used for training the network. The most frequently
used method is the back propagation learning algorithm (see for instance, (Bhatti et al.,
1996; Rostami et al., 2018)).

For updating the weights of NN during training the Levenberg-Marquardt training
algorithm (Bhatti et al., 1996; Rostami et al., 2018) is used. The MSE criterion or
the maximum number of iterations decide the termination of the iterative process. A
range of values of the network parameters has been varied systematically to achieve a
good estimate of the training data. The varying network parameters are the number
of hidden neurons in the hidden layers (5-50), with learning rate range: 0.1– 0.9 and
the number of iterations (50-1000) are used for both the estimation of θ and φ. The
training flow process is shown in Fig.4.

The final FFNN structure for θ has 20 hidden layer neurons and the learning rate
is 0.8. Whereas, for the estimation of φ, the learning rate is similar to the previous
case, however, 10 hidden layer neurons are used. The choice of the network parameters
yields a good match between the actual and the predicted values of the time histories
of the variables.

4.2.1. NN Simulation Results

The performance in terms of mean squared error (mse) during the estimation of θ and
φ is shown in Fig. 5.

The regression plots of θ and φ are shown in Fig. 6. The estimates of θ and φ are
plotted against their corresponding target values in these figures. The regression values
of R = 0.99762 for θ, and R = 1 for φ show that the estimates are very close to the
target values, indicating the success of FFNN training.

The estimation error histograms associated with θ and φ are shown in Fig. 7. It
reveals a very small error with an average very close to zero. Finally, the FFNN
estimates of θ and φ are shown in Fig. 8.
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Figure 4. Flowchart for NN training

After properly estimating the functions θ and φ, the sliding mode can be enforced
by selecting an appropriate value of discontinuous controller gain K. The next section
details the implementation of SMC for the UCG process.
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5. Control Implementation Scheme
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Figure 9. Control implementation strategy

The scheme for controller implementation is adapted from (Uppal et al., 2018a),
which is depicted in Fig. 9. It is important to mention that the dynamics of the
control valve and the gas analyzer is not considered during the controller design. The
transfer functions G1(s) and G2(s) represent the dynamics of the control valve and
the gas analyzer, respectively, which are modeled as first order systems with time
delays (Uppal et al., 2018a). The time delays are approximated with first order Pade’s
approximation, which results in the following systems

G1(s) =
u0(s)

u(s)
=

−η1s+ 2

(η1s+ 2)(τ1s+ 1)
, (31)

G2(s) =
Hvm(s)

Hv(s)
=

−η2s+ 2

(η2s+ 2)(τ2s+ 1)
. (32)
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where ηi, i ∈ {1, 2} represents time delays (s), and τj, j ∈ {1, 2} are time constants
(s) for the control valve and the gas analyzer systems, respectively. Here it is perti-
nent to mention that the Pade’s approximation is used because there is a constant
input/output time delay for both the control valve and the gas analyzer systems.

Taking inverse Laplace transform of the Eqs. (31) and (32) yields following second
order ODEs

η1τ1ü0 + (η1 + 2τ1)u̇0 + 2u0 = −η1u̇+ 2u, (33)

η2τ2Ḧvm + (η2 + 2τ2)Ḣvm + 2Hvm = −η2Ḣv + 2Hv. (34)

The Eqs. (33) and (34) are numerically solved. The first order time derivatives are
approximated by forward Euler’s method, whereas, central difference scheme is used
for the double time derivatives. The resultant discretized ODEs are given as

u0(t+ dt) =
Eu0(t) + Fu(t) + Gu(t+ dt) +Hu0(t− dt)

η1dt+ 2dtτ1 + η1τ1
, (35)

Hvm(t+ dt) =
I

P
Hvm(t) +

J

P
Hv(t) +

L

P
Hv(t+ dt)

+
M

P
Hvm(t− dt), (36)

where dt is step size for discretization in time (s), E = 2η1τ1 + 2dtτ1 + dtη1 − 2dt2,
F = 2dt2+dtη1, G = −dtη1,H = −η1τ1, I = 2η2τ2+2dtτ2+dtη2−2dt2, J = 2dt2+dtη2,
L = −dtη2, M = −η2τ2 and P = η2dt+ 2dtτ2 + η2τ2.

The updated value of the control input u(t + dt) is obtained by the discretization
of Eq. (18)

u(t+ dt) = u(t)−
dt

φ(t)

(

K sign(s) + θ(t)
)

. (37)

The NN training is carried out during the open loop operation of the UCG reactor.
Furthermore, it can be seen in Fig. 9 that the flow rate of the steam δ produced from
the water influx from the aquifers surrounding the UCG reactor acts as an input dis-
turbance. The motivation for considering δ as an input disturbance becomes obvious
from Eq. (4), where the vector Ci at the inlet boundary x = 0 shows that u and δ
enter the system through the same channel. The mechanism for measuring the amount
of water intruding in the UCG reactor from the surrounding strata is not available.
However, for a successful UCG process, an optimum amount of steam is required (Up-
pal et al., 2014). The excess steam can decrease the temperature of the reactor, which
may slow down the oxidation and gasification reactions responsible for producing the
syngas. On the other hand, steam is also a reactant in the main gasification reaction
(R3 in Table. 2), therefore, if the amount of steam drops from a critical value the
production of syngas reduces.

The UCG system is numerically solved using the method discussed in (Uppal et al.,
2018a). The system is initially operated in the ignition phase, which is followed by the
gasification of the coal seam. The coal bed is ignited to increase the temperature of
the reactor, so that oxidation and gasification reactions can take place significantly.

The simulation results for NASMC are presented in the following section.
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6. Results and discussion

The controller starts operation after the system is operated in the gasification mode
for one hour. The closed loop operation is delayed so that the transients of shifting
from ignition to gasification phase die out and also Hv may reach a sufficiently higher
value. The remainder of the section discusses the simulation results of the closed loop
system. Moreover, a fair comparison is also made between the results of NASMC and
the conventional SMC design of (Uppal et al., 2018a).

The heating value Hv reaches the desired constant value Hvr (Fig. 10), due to the
control input u0, which is presented in Fig. 11. The time profile of steam flow rate δ
at x = 0, which is considered as an input disturbance is depicted in Fig. 12. When δ
increases between t = 4–5 hrs, the amount of steam tends to increase in the reactor,
which also elevates the endothermicity of char gasification reaction resulting in the
decrease of the reactor temperature. Consequently, the magnitudes of the reaction rates
R1, R2 and R3 decrease, which lowers the production of syngas, thereby deteriorating
the performance of the process. The controller reacts to the situation by increasing u0,
thus adding more moles of O2, which catalysis the char oxidation reaction to recover the
reactor’s temperature and performance. On the other hand when δ decreases between
t = 5–6 hrs, the molar fraction of steam decreases in the reactor. The controller
reduces the concentration of O2 by lowering down u0, so that the volumetric content
of steam can be restored to facilitate the production of syngas through char gasification
reaction. Hence, the NASMC robustly caters the effect of disturbance δ. The sliding
variable s, which is the difference between Hvr and Hv is shown in Fig. 13.
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Figure 10. Heating value of the product gases.
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It is obvious from the above results that due to the estimation of the parameters
θ and φ, the performance of NASMC is more satisfactory and robust as compared to
SMC algorithm of (Uppal et al., 2018a).
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7. Conclusion

The underground coal gasification problem is formulated as an input output process to
maintain a desired heating value of the product gases. Since this problem is subjected
to numerous modeling uncertainties and external disturbances, therefore, in this work
an NASMC strategy is proposed to provide the necessary robustness. The NNs are
used to estimate the unknown state functions and sliding mode is introduced to provide
in-sensitivity to modeling imperfections and the disturbance. The target data for NN
training requires time derivatives of the measured concentration of the gases, which
are estimated via UED. The simulation results demonstrate the effectiveness of the
proposed scheme. Moreover, the results obtained from NASMC are compared with the
results of the conventional SMC. The comparative results, in nutshell, confirms that
NASMC exhibits better performance as compared to its counter part.
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Kostúr, K. and Kačúr, J. (2008). The monitoring and control of underground coal gasification
in laboratory conditions. Acta Montanistica Slovaca, 13(1):111–117.

Kostur, K. and Kacur, J. (2011). Development of control and monitoring system of UCG by
promotic. In 2011 12th International Carpathian Control Conference (ICCC), pages 215
–219.

Kostur, K. and Kacur, J. (2017). Extremum seeking control of carbon monoxide concentration
in underground coal gasification. IFAC-PapersOnLine, 50(1):13772 – 13777. 20th IFAC
World Congress.

Nied, A., Seleme, S., Parma, G., and Menezes, B. (2007). On-line neural training algorithm with
sliding mode control and adaptive learning rate. Neurocomputing, 70(16):2687 – 2691. Neural
Network Applications in Electrical Engineering Selected papers from the 3rd International
Work-Conference on Artificial Neural Networks (IWANN 2005).

PARMA, G. G., MENEZES, B. R. D., and BRAGA, A. P. (1999). Neural networks learning
with sliding mode control: The sliding mode backpropagation algorithm. International
Journal of Neural Systems, 09(03):187–193.

Perkins, G. M. P. (2005). Mathematical Modelling of Underground Coal Gasification. PhD
thesis, The University of New South Wales.

Petroleum, B. (2018). Bp statistical review of world energy june 2018, 2018. URL:
https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-
review/bp-stats-review-2018-full-report.pdf.

Rostami, A., Anbaz, M. A., Gahrooei, H. R. E., Arabloo, M., and Bahadori, A. (2018). Accu-
rate estimation of co2 adsorption on activated carbon with multi-layer feed-forward neural
network (mlfnn) algorithm. Egyptian Journal of Petroleum, 27(1):65–73.

Thorsness, C. B. and Rozsa, R. B. (1978). Insitu coal-gasification: Model calculations and
laboratory experiments. Society of Petroleum Engineers Journal, 18:105–116.

Uppal, A. A. (2016). Modeling and Control of Underground Coal Gasificatio. PhD thesis,
COMSATS Institute of Information Technology, Islamabad.

Uppal, A. A., Alsmadi, Y. M., Utkin, V. I., Bhatti, A. I., and Khan, S. A. (2018a). Sliding
mode control of underground coal gasification energy conversion process. IEEE Transactions
on Control Systems Technology, 26(2):587–598.

Uppal, A. A., Bhatti, A. I., Aamir, E., Samar, R., and Khan, S. A. (2014). Control ori-
ented modeling and optimization of one dimensional packed bed model of underground coal
gasification. Journal of Process Control, 24(1):269–277.

Uppal, A. A., Bhatti, A. I., Aamir, E., Samar, R., and Khan, S. A. (2015). Optimization and
control of one dimensional packed bed model of underground coal gasification. Journal of
Process Control, 35:11–20.

Uppal, A. A., Butt, S. S., Bhatti, A. I., and Aschemann, H. (2018b). Integral sliding mode
control and gain-scheduled modified utkin observer for an underground coal gasification
energy conversion process. In 2018 23rd International Conference on Methods Models in
Automation Robotics (MMAR), pages 357–362.

Uppal, A. A., Butt, S. S., Khan, Q., and Aschemann, H. (2019). Robust tracking of the
heating value in an underground coal gasification process using dynamic integral sliding
mode control and a gain-scheduled modified utkin observer. Journal of Process Control,
73:113 – 122.

Van der Riet, M. (2008). Underground coal gasification. In Proceedings of the SAIEE Gener-
ation Conference. Eskom College, Midrand (19 Feb 2008).

24



Winslow, A. (1977). Numerical model of coal gasification in a packed bed. Symposium (Inter-
national) on Combustion, 16(1):503 – 513.

25


