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Abstract
In this paper, a novel modified optimization algorithm is presented, which combines Nelder-Mead
(NM) method with a gradient-based approach. The well-known Nelder Mead optimization tech-
nique is widely used but it suffers from convergence issues in higher dimensional complex prob-
lems. Unlike the NM, in this proposed technique we have focused on two issues of the NM
approach, one is shape of the simplex which is reshaped at each iteration according to the objec-
tive function, so we used a fixed shape of the simplex and we regenerate the simplex at each
iteration and the second issue is related to reflection and expansion steps of the NM technique in
each iteration, NM used fixed value of a, that is, a = 1 for reflection and a = 2 for expansion and
replace the worst point of the simplex with that new point in each iteration. In this way NM
search the optimum point. In proposed algorithm the optimum value of the parameter a is com-
puted and then centroid of new simplex is originated at this optimum point and regenerate the
simplex with this centroid in each iteration that optimum value of a will ensure the fast conver-
gence of the proposed technique. The proposed algorithm has been applied to the real time
implementation of the transversal adaptive filter. The application used to demonstrate the perfor-
mance of the proposed technique is a well-known convex optimization problem having quadratic
cost function, and results show that the proposed technique shows fast convergence than the
Nelder-Mead method for lower dimension problems and the proposed technique has also good
convergence for higher dimensions, that is, for higher filter taps problem. The proposed tech-
nique has also been compared with stochastic techniques like LMS and NLMS (benchmark)
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techniques. The proposed technique shows good results against LMS. The comparison shows that
the modified algorithm guarantees quite acceptable convergence with improved accuracy for
higher dimensional identification problems.

Keywords
Nelder Mead, optimization, direct search, adaptive filtering

Introduction

The Nelder-Mead (NM) is one of the best direct search based optimization tech-
nique for unconstrained multivariable complex problems.1 This strategy was pro-
posed by Nelder and Mead.2 Due to its derivative free nature and ease of
implementation it finds its applications in diverse disciplines, for example, engi-
neering, computer science, chemistry, biosciences, etc.3–12

NM is a very popular heuristic-based optimization strategy, however, a very
small number of papers have addressed its convergence. In this regard, a detailed
study was carried out in Torczon.13 An analytical expression for the convergence
of pattern search methods was formulated. However, the NM algorithm was not
considered in that study because of the varying structure of the simplex in each
iteration which directly depends on the cost function. The convergence of NM
strategy was further investigated by Lagarias et al.,14 where one and two dimen-
sional strictly convex functions were studied. It was claimed that the algorithm
converges for a convex function of one variable, whereas, for the two-variable
functions the convergence can also be ensured. McKinnon et al.15 also highlighted
the convergence issues of NM. It was concluded that if the objective function con-
sidered in the work of Lagarias et al.14 is thrice continuously differentiable, then
the minimum point can be achieved, otherwise, the algorithm may converge to a
non-stationary point. In Lagarias et al.16 a variant of the NM technique was pro-
posed for the twice continuously differentiable cost function.

Besides the convergence issues, this optimization technique also suffers from
dimensionality problems. The convergence performance is proportional to the
dimension of the optimization problem. The optimization problem with lower
dimension will converge faster as compared to higher dimension problem (see for
instance Torczon,13 Lagarias et al.,16 and Han and Neumann17). This phenomenon
is called the curse of dimensionality.18 Price et al.19 proposed a variant of NM
which shows good results for higher dimensions with better convergence rate.
Moreover, in Gao and Han20 proposed a modified approach in which expansion,
contraction, and shrinking become the function of the dimension of an optimiza-
tion problem.

Many other modifications are also proposed in the literature. In Mehta and
Dasgupta21 a modified NM algorithm was proposed for constrained optimization
problems. Online implementation of NM method was proposed for computing sys-
tems and chemical processes in Poojary and colleagues22–24 and Xiong and Jutan25

respectively. In Marsililibelli and Castelli26 an algorithm was proposed in which
the parameters of simplex search are made adaptive according to the shape of the
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objective function. It also proposed a random search procedure for the initializa-
tion of simplex that assures the convergence of global minimum. In Musafer and
Mahmood,27 a free selective simplex for the downhill Nelder Mead simplex algo-
rithm is proposed rather than the determinant simplex that forces its elements to
perform a single operation,such as reflection.

Basically NM is a local search technique, however, some hybrid global optimi-
zation techniques were developed in Yıldız and colleagues,28–39 which incorporate
NM algorithm. The aim of hybridization is to accelerate global convergence.

Although many modifications are proposed in NM that address the issues of
convergence and curse of dimensionality, but still there is scope to investigate new
modifications that consider simplex structure like Spendley et al.40 and optimal
selection of parameters for NM operations that ensure convergence of the algo-
rithm and give better performance for higher dimensions.

In this paper, a novel modified optimization algorithm is presented, which com-
bines Nelder-Mead (NM) method with a gradient-based approach. In this tech-
nique, the simplex is initialized as a non-degenerated structure and its shape does
not change with iterations. Therefore, it ensures the convergence of the algorithm
even for higher dimensions. Moreover, due to the inculcation of the gradient based-
approach, the modified NM algorithm solves the optimization problem in fewer
iterations as compared to the NM. The Online implementation of this modified
technique is also presented. Finally, this method is applied to a system identifica-
tion problem where parameters are estimated in mean square error sense. In this
case optimization problem is convex with a global minimum. This is a classical
optimization problem in adaptive filter theory.41

The rest of the article is arranged as follows. The NM method is explained in
Section 2, whereas, Section 3 presents the proposed algorithm. The online imple-
mentation of MNM is given in Section 4, the result discussion is presented in
Section 5 and the article is concluded in Section 6.

Nelder-Mead

Nelder-Mead is a well known heuristic optimization method based on simplex
structure. A simplex is hyper tetrahedron in n-dimensional space consisting of
n+1 points, where n is the number of optimization variables. The simplex in one
dimensional (1-D) space is a line segment, for 2-D space a triangle, and a tetrahe-
dron for 3-D. NM algorithm starts by initializing the simplex using initial guess of
the optimization variables. Simplex vertices are labeled as x1, x2 . . . xn+1, with their
corresponding objective function values f (x1), f (x2) . . . f (xn+1). In each iteration of
NM the simplex vertices are sorted in ascending order according to the corre-
sponding objective function values f (x1)\f (x2)\ . . . \f (xn+1). Let xb = x1 refers
to the best point having smallest value of the cost function. Similarly xw = xn+1

and xs = xn are the worst and second most worst points respectively. In each itera-
tion the algorithm tries to make a new simplex in which xw is replaced by xn such
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that f (xn)\f (xw). The new point xn is obtained by equation (1), which represents
the straight line starting from xw and passing through xm.

xn = xm +a xm � xwð Þ
where,

xm =
1

n

Xn

i= 1

xi

ð1Þ

Where xm is the average of n points excluding xw, and a is the scalar parameter.
The value of alpha is governed by four rules, which include Reflection, Expansion,
Contraction(outside and inside), and Shrink. The algorithm 1 explains one iteration
of the NMmethod.

All the rules of NM algorithm are presented in the Figure 1.

Modified Nelder Mead

The NM algorithm explained in the previous section requires direction of propaga-
tion of the simplex structure and the value of a in each iteration. The algorithm
heuristically computes these parameters. The shape of the simplex is updated in a
direction which is calculated by a vector joining xw and the midpoint xm of all other
vertices. The parameter a has typically four choices: 1, 2, 0.5, and 20.5 which are
based on the aforementioned rules.

A modified NM (MNM) algorithm is proposed in this section, which differs
from the conventional NM method in two aspects: structure of the simplex and the
selection of a. In MNM the simplex is comprised of 2n+1 vertices and its shape is
also preserved throughout the optimization problem. However, in conventional
NM the shape of the simplex can change in each iteration, and its structure can
also degenerate especially in case of non smooth objective functions. Moreover, in

Algorithm 1. Steps involved in NM algorithm.

1: Sorting of vertices: Vertices are sorted in ascending order according to their
corresponding objective function values as explained earlier.

2: Midpoint: Midpoint is computed by equation (1)
3: Reflection: Solve equation (1) for a = 1 and define xn as xr , where xr is called the reflection

point. Evaluate f (xr), if (f (xb)\f (xr)\f (xs)) choose xw = xr

4: Expansion: If (f (xr)\f (xb)) then solve equation (1) for a = 2, then the solution (xe = xn) is
called the expansion point. Evaluate f (xe), if (f (xe)\f (xb)), then xw = xe

5: Contraction: If (f (xs)\f (xr)\f (xw)) then set a = 0:5 in equation (1). This is called outside
contraction and the solution is denoted by xoc. Evaluate f (xoc), and if f (xoc)\f (xr), then
xw = xoc, then otherwise apply the shrink rule. If f (xr).f (xw), set a = � 0:5 in equation (1).
This is called inside contraction and the solution is referred as xic. Evaluate f (xic), and if
(f (xic)\f (xw)) then replace xw with xic, otherwise go to shrink rule.

6: Shrink: In this rule all the verices are shrinked by half except the best.
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MNM a is analytically computed by solving an optimization problem, rather than
heuristic selection of a in the conventional NM.

Consider a generalized unconstrained optimization problem, given by
equation (2)

min
x

r = f (x1, x2, . . . , xn) ð2Þ

where a � x � b 2 <n is the vector of optimization variables and r(x) : <n ! < is
the objective function.

In MNM method the simplex is a hyper tetrahedron structure in n dimensional
space. The simplex has 2n+1 vertices: v1, v2 . . . v2n+1, which are computed by using
equation (3).

vi = vc +(� 1)idaj, i= 1, 2, 3, . . . , 2n ð3Þ

where vc is the centroid of the simplex, d is the simplex size and the set
faj, j= 1, 2, . . . , ng represents orthonormal basis for the n dimensional space con-
taining the simplex.

The MNM method starts by initializing vc by using initial guess of the optimiza-
tion variables, followed by sorting of the vertices in ascending order v1, v2 . . . v2n+1

according to their corresponding objective function values r(v1)\r(v2)
\ . . . \r(v2n+1), where v1 is the best and v2n+1 is the worst vertex. The mid point
vm of all vertices is computed, excluding v2n+1. Then the new centroid is computed
by equation (4).

Figure 1. Operations performed on the simplex in Nelder-Mead’s algorithm for n = 2.
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vc = v2n+1 +a*Dp

where

Dp= vm � v2n+1

ð4Þ

where a* is defined in the subsequent paragraph.
The n dimensional optimization problem in equation (2) can be transformed into

one dimensional problem as defined in equation (5)

min
a

r= f (vc(a)) ð5Þ

The solution of the above optimization problem is a*, which is obtained by solving
equation (6)

dr(vc(a*))

da*
= 0 ð6Þ

The Algorithm 2 presents all the steps of MNM.

Parameter estimation using MNM: An online implementation

In this section online implementation of the MNM algorithm for parameter identi-
fication is discussed.

Algorithm 2. Steps involved in MNM.

1: Initialization:
2: Choose the initial guess of simplex centroid vc and simplex size (d).
3: Compute the orthonormal basis vectors for the space containing the simplex.
4: Iterative loop
5: Construction of Simplex: Simplex is generated by using equation (3).
6: Sorting of vertices:
7: Compute objective function at all 2n + 1 vertices.
8: Vertices are sorted in ascending order according to their corresponding objective

function values as explained earlier.
9: Midpoint: Midpoint of all the vertices is computed excluding v2n + 1.

10: Update Simplex Size: while fr(vc)\r(v2n + 1)g set d = d
2 and repeat the steps 5! 9,

otherwise proceed to the next step.
11: Compute a*: Solve equation (6) to obtain a*
12: New Centroid: Updated value of vc is found by solving equation (4)
13: Termination Criterion: If r(vc) � dr (tolerance for cost function) terminate the loop,

otherwise go to step 5
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Problem statement

The algorithm is used to estimate the parameters of an FIR system. The adaptive
filter shown in Figure 2 estimates the parameters of the system in such a way that
error e(n) given by equation (7) is minimized.

e(n)= d(n)� y(n) ð7Þ

where d(n) is the desired output of the system and y(n) is response of the adaptive
filter.

The error e(n) is minimized in mean square sense, it means that the model para-
meters are changed by continuously observing the input and the desired output. It
is a sequential realization of wiener filters. The cost function z for aforementioned
problem is given by equation (8)

z = e2(n)

= fd(n)� y(n)g2
ð8Þ

where y(n) is given by equation (9)

y(n)=
XN�1

i= 0

wi(n)x(n� i)

= �wT (n)�x(n)

ð9Þ

Equation (9) is the standard representation of digital filters in the literature. It
describes the scalar product of two vectors �w and �x. Where
�w(n)= w0(n),w1(n), . . . ,wN�1(n)½ �T are adaptive filter taps and
�x(n)= x(n� 1), x(n� 2), . . . , x(n� N + 1)½ �T are input samples and ‘‘n’’ represents
the sample or discrete time in �x, �w, and output y.

Figure 2. N-taps transversal adaptive filter.41
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Problem formulation

The MNM is implemented for estimating parameters (wT (n)) of the system. The
optimum value of wT (n) is found by application of the procedure detailed in
Algorithm 2. The centroid of the initial simplex is wT (0) which represents the initial
value of the N filter taps. Now by using the results in equations (4) and (9) the cost
function in equation (8) takes the following form:

z = d(n)� fv2n+1 +a*Dp(n)gT
x(n)

h i2

ð10Þ

Equation (10) highlights a very important property of the MNM algorithm.
Now the optimization problem of n dimensions has been reduced to finding an
optimum value of the parameter a, because it is the only unknown in equation
(10). The value of a* is found by equation (6), which for the current problem is
given by equation (11)

a* =
½d(n)� vT

c (n)x(n)�
fvT

m(n)� vT
2n+1(n)gx(n)

ð11Þ

Now the centroid for the new simplex is determined by equation (12)

vk + 1
c (n)= vk

2n+1(n)+a(vk
m � vk

2n+1) ð12Þ

where k refers to the kth iteration of the optimization routine.

Results and discussion

The performance of the proposed algorithm is evaluated by using an example of
system identification problem given in Farhang-Boroujeny,41 which is described by
block diagram in Figure 3, where v(n) is zero mean, unit variance white gaussian
noise, x(n) is the output of coloring filter, and is applied as input to the system and
the adaptive filter. The coloring filter, system, and the adaptive filter are given by
equations (13), (14), and (15)

Figure 3. System identification problem.

8 Science Progress



H(z)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p

1� bz�1
ð13Þ

P(z)= b0 + b1z�1 + b2z�2 + . . . + bN�1z�N + 1 ð14Þ

W (z)=w0 +w1z�1 +w2z�2 + . . . +wN�1z�N + 1 ð15Þ

where fbi, i= 0, 1, . . . ,N � 1g are the system parameters, fwi, i= 0, 1, . . . ,N � 1g
are the taps of the adaptive filter and 0 � b � 1 is a coloring parameter, which is
used to control the eigen value spread of the correlation matrix of input v(n).

The aforementioned system identification problem is solved by using MNM,
NM, LMS, and NLMS algorithms. The LMS and NLMS are used because they
are widely used for such problems, moreover, NLMS is a bench mark for such
applications. All the methods are online except NM, which is an offline technique
requiring complete statistics of input for the system identification problem. The
simulation results show comparison of above mentioned algorithms for identifica-
tion of 2, 5, 10, and 25 taps FIR systems. The adptive filter taps are randomly initi-
alized for all the techniques. The implementation of NM and MNM is presented in
Algorithms 1 and 2 respectively, whereas, the pseudo-code for LMS and NLMS is
given in Appendix. For simulations the simplex size for both MNM and NM algo-
rithms is taken as 1, the maximum number of iterations allowed is 10, 000 and the
stopping criterion is er\0:005, where er is defined by equation (16)

er =
jwa � wsj

wa

3100 ð16Þ

where wa represents optimum weights computed by Wiener Hopf’s equation41 given
below as equation (17) and ws represents the simulated values of the filter taps.

Wa =R�1p ð17Þ

where, R is the auto-correlation matrix of the input signal and ‘‘p’’ is the cross-
correlation vector of input ‘‘u’’ and desired known signal ‘‘d.’’ The trajectories of
filter taps for different algorithms are shown in Figures 4 to 7 for different values
along with the contours of the performance surface.

The results in Figures 4 to 7 show the convergence of the algorithms in the pres-
ence of coloring effect in the input of the system and the adaptive filter. The color-
ing depends upon the value of b in equation (13), when b= 0, x(n) is pure white
noise, whereas, x(n) is totally colored for b= 1. The coloring is introduced to inves-
tigate the robustness of the aforementioned algorithms. It can be seen from the
results that the number of iterations taken to reach the minimum value of the objec-
tive function zmin for all the algorithms vary by changing the amount of coloring in
x(n). However, MNM and NM show more robustness to the coloring effect as com-
pared to LMS and NLMS, especially LMS is very sensitive to the change in value
of b. The expression for zmin is given as
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zmin =E½d2(n)� � pT R�1p

where,

R=E½x(n)xT (n)�
p=E½x(n)d(n)�

where R and p are N3N autocorrelation matrix and N31 cross correlation vector,
respectively.

Figure 5. Effect of coloring on the trajectories of filter taps for different algorithms for b = 0:5.

Figure 4. Effect of coloring on the trajectories of filter taps for different algorithms for b = 0.

10 Science Progress



The quantitative analysis of the robustness of the algorithms is presented in
Table 1 by computing standard deviation (std) of the number of iterations for all
the techniques.

The results in Figures 8 and 9 show that the mean square error (MSE) for the
algorithms decreases with the number of iterations. The error is computed by
ensemble average of the sequence given by equation (8) over 100 simulation trials.
It can be seen from Figures 8 and 9 that the performance of MNM is better than
LMS and even comparable with NLMS. However, the NM algorithm shows poor

Figure 6. Effect of coloring on the trajectories of filter taps for different algorithms for b = 0:75.

Figure 7. Effect of coloring on the trajectories of filter taps for different algorithms for b = 0:95.
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Table 1. Effect of coloring on the number of iterations for all the algorithms.

b Number of iterations

MNM NM LMS NLMS

17 30 50 13
0.5 11 33 113 9
0.75 16 28 280 19
0.95 16 31 1910 12
Std 2.7 2.08 886.5 4.19

Figure 8. Learning curve plot of the algorithms for 2-taps system for b = 0.

Figure 9. Learning curve plot of the algorithms for 2-taps system for b = 0:5.
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performance and converges to a relatively higher value of MSE as compared to its
counterparts. The robustness of MNM and NLMS due to the coloring effect can
also be observed from the results.

Figures 10 to 13 show similar results for 5 and 10 taps adaptive filters. The simu-
lation results show that the convergence rate of MNM algorithm is inversely pro-
portional to the number of filter taps, however, the convergence of the algorithm is
not effected by increasing the taps. Figure 14 demonstrate the estimation of 25-taps
FIR filter using MNM and NM algorithms. These results show that the MNM
algorithm gives sufficient performance for a large scale optimization problem,

Figure 10. Learning curve plot of the algorithms for 5-taps system for b = 0.

Figure 11. Learning curve plot of the algorithms for 5-taps system for b = 0:5.
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whereas, the conventional NM fails to solve the problems of higher dimensionality.
The LMS and NLMS algorithms also estimate the filter taps successfully.

Conclusion

A novel modified optimization technique based on NM method has been proposed
that transforms n-dimensional optimization problem in to one-dimensional pro-
belm for finding the optimum step size (a*). Unlike NM the step size in MNM is
computed analytically by gradient descent approach. An online implementation of

Figure 12. Learning curve plot of the algorithms for 10-taps system for b = 0.

Figure 13. Learning curve plot of the algorithms for 10-taps system for b = 0:5.
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the MNM is also proposed and is applied on the problem of online system identifi-
cation. The performance of the proposed algorithm has been compared with LMS,
NLMS, and NM. For the small scale optimization problems MNM outperforms
NM and LMS, and its performance is quite similar to NLMS, which is considered
as a bench mark for adaptive filter based online parameter estimation. The algo-
rithm also shows robustness against the coloring in the input signal. However, for
large scale optimization problem the convergence rate of MNM decreases.

The implementation of MNM on nonlinear optimization problems will further
validate its effectiveness.
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Appendix

LMS algorithm

The LMS algorithm is very sensitive to m. If m is small the convergence of LMS is
very slow and if it is very high then LMS may diverge. The convergence of LMS is
guaranteed if m remains within the range

0\m\
1

lmax

ð18Þ

where lmax is the maximum eigen value of the autocorrelation matrix R of x(n).
The above mentioned Algorithm 3 can also be applied for NLMS, except the value
of m is given by equation (19).

m=
1

2xT x
ð19Þ
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Algorithm 3. Steps involved in LMS.

1: Initialization: Initial guess for taps of the adaptive filter w is selected randomly
2: Iterative loop
3: Input and desired output: For jth iteration input vector is given as

xT(n) = ½x(n + N� 1), . . . , x(n� 1), x(n)� and desired output is d(n)
4: Compute error: Error is computed by e(n) = d(n)� wT(n)x(n).
5: Filter taps update: Filter taps are updated by w(n + 1) = w(n) + 2me(n)x(n)
6: Termination Criterion: Terminate if criterion in equation (16) is satisfied, otherwise

go to step 2
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