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Robustness and Performance Parameterization of Smooth Second Order
Sliding Mode Control
Imran Khan*, Aamer Iqbal Bhatti, Ali Arshad, and Qudrat Khan

Abstract: Novel robustness and performance parameters are established for Smooth Super Twisting Algorithm
(SSTA). The stability of SSTA is well established for arbitrary gains using homogeneity approach. The design
and tuning of the controller parameters is a major issue and no analytic design method is available so far. A
novel Lyapunov function is proposed and by the virtue of stability analysis, the stability bounds for a certain class
of uncertainties are determined. In addition, the issue of finite time convergence is also explored, resulting in
determination of the settling time as a function of the controller parameters. The proposed settling time formulation
suggests a methodical approach to SSTA design in contrast to the available rules of thumb. Unlike the literature
available for Higher Order Sliding Mode (HOSM) controllers, the proposed design framework is validated against
a challenging problem of the Underground Coal Gasification (UCG) process control. Like the other process control
problems the chosen problem is nonlinear and contains significant uncertainties.

Keywords: Discontinuous system, higher order sliding mode (HOSM), smooth supertwisting algorithm (SSTA),
underground coal gasification (UCG).

1. INTRODUCTION

One of the most stimulating aspect of the Sliding Mode
Control (SMC) [1–4] is the discontinuous nature of the
controller, whose primary function is to switch between
two characteristically different system structures such that
a new type of system motion, called sliding modes [5], ex-
ists in a manifold, known as the sliding manifold. This in-
spirational system phenomenon results in splendid system
performance, which includes parameter invariance and re-
markable robustness against disturbances and model un-
certainties. However, enforcing sliding modes require the
discontinuous controller to perform switching at an in-
finite frequency which is not possible for physical sys-
tems. This limitation causes the high frequency oscilla-
tions, known as chattering, about the sliding manifold.
The chattering phenomenon is dangerous for actuators and
in some cases it causes total system failure. Another limi-
tation of the conventional SMC is that it is only applicable
to the relative degree one systems (control appears explic-
itly in the first derivative of the sliding manifold [5]).

The control system community continued the research,
with the aim to keep intact all the benefits (robustness and
parameter invariance) of the SMC while avoiding or min-
imizing the chattering. A number of techniques have been
proposed for chattering avoidance, such as, low pass filter-
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ing of the control signal, approximation of signum func-
tion by a saturation function and the HOSM control [6–8].
The HOSM controllers such as Super Twisting and Real
Twisting Algorithms (STA and RTA respectively) gained
popularity in the community of control theoreticians and
practitioners, due to their generalized structures, applica-
bility to relative degree one and two systems respectively
and more importantly, reduced chattering.

In a multi-loop system these controllers do not offer
much performance improvement in the situation where
an inner loop requires a continuous signal from the outer
loop. To overcome this inherent flaw of STA and RTA,
a smooth second order SMC framework was proposed in
[9]. In [10], a smooth second order SMC based on STA
was proposed and its stability was proved using the homo-
geneity approach. The smooth control algorithms proved
to be effective in multi loop control schemes, as they pro-
duce a continuous (smooth or almost chattering free) con-
trol action.

One of the most important problems in SMC is the sta-
bility analysis and proving the finite time convergence of
the algorithm. For the stability and finite time conver-
gence of STA, SSTA, RTA and Smooth RTA (SRTA) the
geometric [7], or homogeneity [11], approaches are used.
These approaches did well in stability analysis of these
algorithms but did not provide the robustness bounds or
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estimate of the convergence time. In Moreno et al. [12], a
Lyapunov function was used for the first time for the sta-
bility analysis and finite time convergence of STA. This
approach allows to study this algorithm more deeply as
it parametrizes the algorithm’s stability and convergence
time. In [13], the theory developed in [12], was used to
set a linear framework for the stability analysis of STA. In
Moreno et al. [14], a method for constructing strict Lya-
punov function was proposed which was computationally
very effective and efficient. Furthermore, the stability and
robustness analysis of STA was carried out using this tech-
nique.

The closed loop system with SSTA proposed in [10] has
the structure shown in (1) below:

ẋ1 =−k1|x1|
ρ−1

ρ sign(x1)+ x2 +ζ1(t,x),

ẋ2 =−k2|x1|
ρ−2

ρ sign(x1)+ζ2(t,x), (1)

where x ∈ ℜ2 is the state vector, ki, i = 1,2 are the con-
troller gains, ρ ≥ 2 is the smoothing parameter and ζi(t,x)
are bounded matched disturbances.

Since SSTA is very sensitive to the so-called drift terms
(see [10] and [15]), so the authors used a second order dis-
turbance observer to cancel the effects of these terms. The
homogeneity approach used in [10] for the analysis of sys-
tem (1) does prove the stability subjected to the drift term.
However, this approach does not provide any analytical
solution for the gains and convergence time of the closed
loop system. In addition, when system (1) is subjected to
matched disturbance then the homogeneity in closed loop
becomes a question.

In this paper, we present a novel robust stability analysis
of SSTA in closed loop. The main contributions are:

• Development of a strict Lyapunov function for the ro-
bust stability of SSTA.

• Analytical expressions for the gains of SSTA are de-
veloped.

• Analytical expressions are proposed for the conver-
gence time determination of SSTA, which can be used
for performance improvement of the closed loop sys-
tem.

• The effects of the controller parameters k1, k2 and ρ ,
on the closed loop performance are discussed.

• SSTA, with the proposed analytical expressions for
its gains, is applied to the challenging process control
of UCG.

The paper is organized as follows: Section 2 covers
the development of a strict Lyapunov function for the un-
perturbed system (1) and presents the proof of stability
and finite time convergence. In Section 3, analysis of the
closed loop system (1) subjected to bounded matched dis-
turbance is carried out and a method for choosing the con-
troller gains is proposed. In Section 4, SSTA is applied to

the process control of UCG, for maintaining the calorific
value of the product gases at a desired value and Section 5
concludes this work.

2. SSTA WITHOUT PERTURBATION

Consider system (1) to be nominal (ζ1(t,x) = ζ2(t,x) =
0) as given in (2)

ẋ1 =−k1|x1|
ρ−1

ρ sign(x1)+ x2,

ẋ2 =−k2|x1|
ρ−2

ρ sign(x1). (2)

Inspired by the technique proposed in [12] and [14], take a
quadratic, positive definite and radially unbounded Strict
Lyapunov function:

V (x) = ξ T Pξ , (3)

where ξ T = [|x1|ysign(x1) x2], y = ρ−1
ρ and P ∈ ℜ2×2 is

symmetric and positive definite matrix, which is a solution
of the arithmetic Lyapunov equation (ALE) (4).

AT P+PA =−Q. (4)

Here Q ∈ ℜ2×2 is another symmetric and positive definite
matrix.

The time derivative of the vector ξ along the trajectories
of (2), is given by:

ξ̇ =

[
∂
∂ t

|x1|ysign(x1)
∂
∂ t

x2

]T

=
[
y|x1|y−1ẋ1 ẋ2

]T

=

[
y|x1|y−1(−k1|x1|ysign(x1)+ x2)

−k2|x1|Msign(x1)

]
where ẋ1 and ẋ2 are given in (2) and M = [(ρ − 2)/ρ] =
y− (1/ρ) simplifies the equation to give

ξ̇ = |x1|−
1
ρ Aξ ,

ξ̇ T = |x1|−
1
ρ AT ξ T , (5)

where

A =

[
−yk1 y
−k2 0

]
.

So the time derivative of (3) along the trajectories of (2)
and using (4) and (5) is given by:

V̇ =ξ̇ T Pξ +ξ T Pξ̇

=|x1|−
1
ρ
[
ξ T AT Pξ +ξ T PAξ

]
=|x1|−

1
ρ ξ T [AT P+PA

]
ξ

=−|x1|−
1
ρ ξ T Qξ . (6)
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The end result in (6) will be negative semi definite if and
only if the matrix Q is positive definite. Following the
definition of the ALE (4), Q will be symmetric and posi-
tive definite if and only if matrix A is Hurwitz because the
matrix P is already assumed to be symmetric and positive
definite. Furthermore, A will be Hurwitz if and only if the
controller gains k1 and k2 are non-negative. So the stabil-
ity of (2) is completely determined by the stability of the
matrix A similar to the linear time invariant systems.

This fact is illustrated in Theorem 1, which associates
the stability of the origin to the stability of matrix A.

Theorem 1: Consider (2), with gains k1 > 0, k2 > 0,
then the following statements are claimed:

• Origin is unique finite-time stable equilibrium point.

• System (2) enforces a second order sliding mode con-
trol.

• For any arbitrary symmetric and positive definite ma-
trices Q and P, any trajectory starting at initial condi-
tion x0 reaches the origin in time less than Ts, which
is given by:

Ts =
ρλmax[P]

λ
1
ρ

min[P]λmin[Q]
V 1/ρ(x0),

where λmax[P], λmin[P] and λmin[Q] are the eigenvalues of
matrices P and Q respectively.

Proof: As system (2) has a discontinuous right hand
side, so this system is understood in Filippov sense [16],
and since it is a differential inclusion ẋ∈ f (x) and 0∈ f (0)
[17], so origin is an equilibrium point for (2). Then con-
sider (6), V̇ is negative definite if and only if Q is positive
definite. It follows from the definition of ALE (4) that if A
is Hurwitz and Q is symmetric and positive definite only
then there exist a unique symmetric and positive definite
matrix P [19]. With this P, (3) becomes positive definite
and its derivative becomes negative definite, which proves
the stability of the origin.

Consider again (6), and applying invariant set theorem
[18], V̇ = 0 on the set

R = {(x1,x2) ∈ ℜ2 | x1 = 0},

and the largest invariant set ℓ in R is

ℓ= {(x1,x2) ∈ ℜ2 | x1 = x2 = 0},

which proves that (2) exhibits second order sliding modes.
As system (2) is stable and origin is the only equilib-

rium point, which guarantee that the states x(Ts) = 0 and
hence V (x(Ts)) = 0, where Ts is the settling time. For the
initial conditions x(0) = x0 and V (x0) =V0, the following

inequalities are true [18].

λmin[P]∥ξ∥2
2 ≤V ≤ λmax[P]∥ξ∥2

2 ,

∥ξ∥2
2 ≥

V
λmax[P]

,

∥ξ∥2
2 ≤

V
λmin[P]

, (7)

and

|x1| ≤ ∥ξ∥2
2 ,

|x1|
1
ρ ≤

[
V

λmin[P]

] 1
ρ

. (8)

Using (7) and (8) in (6), we get

V̇ ≤−δV y, (9)

where,

δ =
λ

1
ρ

min[P]λmin[Q]

λmax[P]
.

Now using Bihari’s inequality [20] and the idea of separa-
ble differential equations [21] on (9)

V (x(t))≤
[
−δ

ρ
t +V

1
ρ

0

]ρ

,

which gives

Ts ≤
ρ
δ

V
1
ρ

0 . □

Remark 1: The proof of Theorem 1 clearly shows the
dependence of settling time on the smoothening parameter
ρ and the controller gains.

Remark 2: The use of quadratic strict Lyapunov func-
tion has allowed to study the stability and performance of
a discontinuous system, similar to a continuous, linear and
time invariant system.

3. SSTA WITH PERTURBATIONS

In order to explore the stability of the perturbed closed
loop system (1), assume that:

Assumption 1: ζ1(t,x) = 0 and ζ2(t,x) is a vanishing
perturbation i.e.,

ζ2(t,x) = 0 ∀ x = 0, t ∈ [0,∞),

|ζ2(t,x)| ≤ L ∀ x ̸= 0, t ∈ [0,∞). (10)

Based on this assumption, a selection rule is proposed
for the gains k1 and k2, such that the effect of these pertur-
bations will be nullified.
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Theorem 2: Consider the perturbation terms in (1) sat-
isfy (10), then there exist, constant, symmetric and posi-
tive definite matrices P and Qp such that (3) is positive
definite and

V̇ =−|x1|−
1
ρ ξ T Qpξ

is globally semi negative definite. Moreover, with a proper
selection of gains k1 and k2, the origin is a global finite
time stable equilibrium point with settling time less than
Tps.

Tps =
ρ
δp

V
1
ρ

0 ,

where

δp =
λ

1
ρ

min [P]λmin [Qp]

λmax[P]
.

Proof: Taking the time derivative of (3), along the tra-
jectories of system (1) with the perturbation terms satisfy-
ing (10).

V̇ = |x1|−
1
ρ
[
ξ T AT Pξ +ξ T PAξ

]
+ ...

+ |x1|−
1
ρ
[
ζ T Pξ +ξ T Pζ

]
, (11)

where

ζ =
[
0 |x1|

1
ρ ζ2(t,x)

]T
, (12)

and the arbitrary P and Qp are

P =

[
P11 P12

P21 P22

]
, Qp =

[
Q11 Q12

Q21 Q22

]
,

where P12 = P21 and Q12 = Q21. Then (11) becomes

V̇ (x) = |x1|−
1
ρ ξ T [(A+M)T P+P(A+M)

]
ξ ,

where

M(t,x) =
[

0 0
n(t,x) 0

]
, (13)

and n(t,x) = ζ2(t,x) |x1|−
ρ−2

ρ sign(x1). From (10), n(t,x)
is bounded. With these, V̇ (x) will be negative definite if
and only if:

• P is symmetric and positive definite.
• A+M is Hurwitz.
• The ALE (A+M)T P+P(A+M) = −Qp is satisfied

for some symmetric and positive definite matrix Qp.

These conditions will be satisfied if the following inequal-
ities are true.

k1 > 0 , k2 > L , P22 > yP2
12 > 0,

P12 < 0 , P11 > 0,

0 <−4yk1P12 −4y(k2 −n)P2
12...

...− (yk1P12 −1)2 − (k2 −n)2P2
12...

...−2(yk1P12 −1)(k2 −n)P22. (14)

Now using the fact that (k2−L)≤ (k2−n(t,x))≤ (k2+L)
and k2 > L, the last inequality in (14) can be re-written as
in (15).

0 <−4yk1P12 −4y(k2 −L)P2
12...

...− (yk1P12 −1)2 − (k2 −L)2P2
12...

...−2(yk1P12 −1)(k2 −L)P22. (15)

The settling time for the perturbed system is then calcu-
lated the same way as in the proof of Theorem 1. □

From the proof of Theorem 2 above, we derive matri-
ces P, Qp and gains k1 and k2 satisfying (14) and (15),
according to the following algorithm.

1) Choose the positive constants β and γ such that 0 <
β < 1, γ > 1 and βγ > 2.

2) Choose ψ = y(k2 +L)P22 and χ = −yk1P12, such that
the following inequality is satisfied.

(χ +1)2 +ψ2 <4χ −4y
Ψ
γ
+ ...

+2y(χ +1)Ψβ . (16)

The inequality (16) represents the interior of an ellipse
(sub-level sets) in the plane (χ,ψ), with center point
(χc,ψc) and is characterized by β , γ and ρ , as shown
in Fig. 1.

χc = 1,ψc = y
(

βγ −2
γ

)
. (17)

So if βγ > 2 is satisfied then the center of the ellipse is
in the first quadrant.

3) For parameters χ , ψ , β and γ , we derive the matrices
P and Qp as:

P11 =
1
y
, P12 = P21 =−

√
(1−β )ψ

2γL
,

0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

χ

ψ

(χ + 1)2 + ψ2
 − 4χ + .... 

 ... + 4y ψ/γ + 2y(χ + 1)ψβ ≤ 0

Fig. 1. Ellipse describing the boundary of set (16) with
ρ = 3, β = 0.5 and γ = 5.
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P22 = γP2
12 , Q11 = 2(k1 +(k2 −L)P12) ,

Q12 = Q21 = y(k1P12 −1)+(k2 −L)P22,

Q22 =−2yP12. (18)

From the above algorithm one can derive the gains k1 and
k2 as:

k1 =
1
y

χ

√
2γL

(1−β )ψ
,

k2 = L
[

ρ (1+β )−β
ρ (1−β )+β

]
. (19)

In Theorem 2 it is shown that SSTA is robust against
perturbations satisfying (10).

Remark 3: For the convergence of a closed loop sys-
tem with an SMC in the loop, it is necessary that the con-
troller gain must be greater than the upper bound (L) of
the disturbances. So the question that how much greater
must be the gains of SSTA is answered by (19).

In the next theorem it is shown that SSTA will also en-
dure the disturbance when ζ1(t,x) ̸= 0, and is bounded by

|ζ1(t,x)| ≤ α1 +α2 ∥ξ∥2 , (20)

for some non-negative constants α1 and α2. From (20) it
is clear that if α1 = 0, then ζ1(t,x) vanishes at the origin
and the trajectories converge at the origin in finite time.
If α1 ̸= 0 then ζ1(t,x) does not vanish at the origin, and
consequently the trajectories of the perturbed closed loop
system (1) will be globally ultimately bounded [18–20].

Theorem 3: Consider system (1) with the perturbation
terms ζ1(t,x), ζ2(t,x) and gains k1, k2 satisfying (20), (10)
and (19) respectively. Then the trajectories of the per-
turbed system (1) are globally ultimately bounded by:

b =

√
λmax[P]
λmin[P]

2α1η
(1−κ)[λmin[Qp]−2α2η ]

,

for α2 ≤ λmin[Qp]
2η , α1 > 0, η∆

√
1+(yP12)2, with P, Qp

given in (18) and 0 < κ < 1. Moreover, if α1 = 0, then
origin x = 0 is a global finite time stable equilibrium point
and all the trajectories converge to the origin in time less
than T 1s

T 1s =
ρλ y

max[P]
λmin[Qp]−2α2η

V
1
ρ

0 ,

where V0 = V (x0) and x0 is the initial condition. When
α1 ̸= 0 then instead of the origin, the trajectories will con-
verge to the manifold Ω,

Ω =
{

x ∈ ℜ2 | V (x(t))≤ λmax[P]µ2} ,

in time less than T 2s

T 2s = ρ
λ y

max[P]
κ (λmin[Qp]−2α2η)

(
V

1
ρ

0 −λ
1
ρ

max[P]µ
2
ρ

)
,

where

µ∆
2α1η

(1−κ)(λmin[Qp]−2α2η)
.

Proof: The time derivative of (3) along the trajectories
of system (1) with the disturbance terms satisfying (10)
and (20) is

V̇ = |x1|
1
ρ [ξ T AT Pξ ξ T PAξ +BT

1 Pξ + ...

+ξ T PB1]+ |x1|
1
ρ
[
BT

2 Pξ +ξ T PB2
]
, (21)

where B1 and B2 are arbitrary given names

B1 =
[
0 |x1|

1
ρ ζ2

]T
,B2 = [yζ1 0]T .

Applying the results obtained in the proof of Theorem 2
to (21), we get:

V̇ =−|x1|−
1
ρ
[
ξ T Qpξ −BT

2 Pξ −ξ T PB2
]
,

=−|x1|−
1
ρ

[
ξ T Qpξ −2ζ1ξ T

[
1

yP12

]]
. (22)

Using the inequalities

ζ1ξ T
[

1
yP12

]
≤ ζ1 ∥ξ∥2 η ≤ (α1 +α2 ∥ξ∥2)η ∥ξ∥2 ,

and

λmin[Qp]∥ξ∥2
2 ≤ ξ T Qpξ ≤ λmax[Qp]∥ξ∥2

2 ,

equation (22) becomes,

V̇ ≤−|x1|−
1
ρ

[
g∥ξ∥2

2 −2α1η ∥ξ∥2

]
, (23)

where

g = (λmin[Qp]−2α2η) .

Case 1: α1 = 0
In this case V̇ (x) (23) will be negative definite if and only
if λmin[Qp]≥ 2α2η .

V̇ (x)≤−ZV y(x),

Z =
λmin[Qp]−2α2η

λ y
max[P]

. (24)

Following the procedure in the proof of Theorem 1 for
calculating the settling time we get T 1s:

T 1s = ρ
λ y

max[P]
λmin[Qp]−2α2η

V
1
ρ

0 .
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Fig. 2. Description of the Manifold (Ω).

Case 2: α1 ̸= 0
In this case for V̇ (x) to be negative definite we need

2α2η ≤ λmin[Qp],

2α1η ≤ (λmin[Qp]−2α2η)(1−κ)∥ξ∥2 ,

from these conditions we derive

∥ξ∥2 ≥ µ. (25)

Now using the identity in (7) and (25)

V (x(t))≥ λmax[P]µ2. (26)

The inequality (26) justifies the manifold Ω, described in
Fig. 2.

Evaluation of (23) at the boundary of the manifold Ω,
gives:

V̇ (x)≤ (λmin[Qp]−2α2η)κ
V y(x)

λ y
max[P]

. (27)

In solving (27) for settling time T 2s, keep in consideration
the fact that now V (x(T 2s)) ̸= 0 (because origin is not the
equilibrium point) rather V (x(T 2s))→ Ω. In short T 2s is
the time in which the trajectories of system (1) reach the
manifold Ω. Under these conditions the solution for T 2s is
performed using procedure in the proof of Theorem 1. □

Remark 4: Uniform ultimate boundedness is always
the definition of stability when the system is under the ef-
fect of some non-vanishing perturbations. The final bound
in this case will be a function of those terms which define
the perturbation.

Remark 5: The proof of Theorem 3 shows the depen-
dence of the settling on the bounds of perturbations and
importantly on the smoothing parameter ρ i.e., settling
times T 1s and T 2s are directly proportional to ρ .

In the next section, the SSTA with the proposed analytic
expressions for gains k1 and k2 (19) are applied to the pro-
cess control problem of UCG. The control purpose is to
maintain a maximum calorific value of the product gases
at the outlet well of the UCG reactor.

4. CONTROL OF THE PROCESS OF UCG

The process of UCG, aims at utilizing coal, deep inside
the earth, for energy production. This is accomplished by
drilling two wells called the injection well and the produc-
tion well, from the surface of the earth to a coal seam. The
process starts by igniting the coal. After ignition the py-
rolysis reaction takes place to produce char. The oxidants
(air/oxygen) and steam (H2O) are injected through the in-
jection well, which reacts chemically with char (gasifica-
tion reaction) producing synthesis gas (a mixture of car-
bon mono oxide (CO) and hydrogen (H2)). The synthe-
sis gas can be used as a fuel in combined cycle turbines
(CCT) for electricity generation or as a chemical feedstock
[22, 23].

The mathematical model of a UCG reactor represents
two phases: solid and gas. Solid phase consists of two
species: coal and char, where as the gas phase is com-
prised of eight gases: CO, carbon dioxide (CO2), Steam
(H2O), H2, methane (CH4), nitrogen (N2), O2 and Tar
(higher hydrocarbons). In [24] the time domain model of
UCG is developed based on the work of [25] and [26]. A
generalized state space representation of UCG model is
given in (28).

ẋ1 = Mcoal

3

∑
j=1

acoal, jr j,

ẋ2 = Mchar

3

∑
j=1

achar, jr j,

ẋ3 =
1

Cs
[ht (T − x3)−Hs] ,

ẋi =
3

∑
j=1

agas, jr j −βxi, where i = 4,5,6,7,8,

ẋ9 =
3

∑
j=1

aH2O, jr j −βx9 +
a
L

u+
ζ
L
,

ẋ10 =
3

∑
j=1

aO2, jr j −βx10 +
b
L

u,

ẋ11 =−βx11 +
c
L

u,

h = m fCOHa +m fH2 Hb +m fCH4 Hc, (28)

where the input u ∈ ℜ is the flow rate of inlet gases (a
mixture of O2, H2O and N2). The output (h) of the reactor,
is the calorific value of the product gas. The water influx
from the surrounding aquifers is an input disturbance to
the process and is represented by ζ (t,x) ∈ ℜ. The profile
for the water influx is shown in Fig. 3 having an upper
bound: l = 3× 10−5 moles/cm2Sec. The description of
states, and other parameters of (28) is given in Table 1.

4.1. Control problem
The process of UCG is very sensitive to the moles of

oxidants injected at the inlet well. In Fig. 4 the response of
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Fig. 3. The profile of water influx w.r.t time.
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Fig. 4. Open loop response of the system w.r.t time.

the system for a constant input (flow rate of oxidants at the
inlet) (u = 2× 10−4moles/cm2sec) is shown. The figure
shows that the calorific value of product gases reaches a
maximum value of 113.831 KJ/mol in 20,000 secs, and
then starts decreasing. This decrease is due to the surplus
amount of the moles of the inlet gas mixture. Therefore,
the control problem is to control the flow rate in such a
way that the maximum calorific value obtained at 20,000
sec, is maintained.

In order to achieve this objective, a bound on the control
input, set by hardware (compressors) limitations, shown in
(29), must not be violated.

0 < u ≤ 3×10−4. (29)

4.2. Simulation results
Based on the results obtained in Section 3, the following

parameters of SSTA are chosen for the simulations: β =
0.80, ρ = 3 and γ = 3, while the parameters χ and ψ are
selected as the center points of the ellipse (16), i.e. (χ =
1, ψ = 0.09). These values give gains, k1 = 0.15 and k2 =
10−4.

The simulations are carried out using MATLAB and

Table 1. Description of states and parameters.

Name Description Unit
x1 Coal Density g/cm3

x2 Char Density g/cm3

x3 Solid Temperature K
x4 Concentration of CO Moles/cm3

x5 Concentration of CO2 Moles/cm3

x6 Concentration of H2 Moles/cm3

x7 Concentration of CH4 Moles/cm3

x8 Concentration of Tar Moles/cm3

x9 Concentration of H2O Moles/cm3

x10 Concentration of O2 Moles/cm3

x11 Concentration of N2 Moles/cm3

Mc Molecular Weight of c Specie
where c Represents Coal or
Char

g/mole

ai. j Stoichiometric Coefficient of ith
Specie in jth Chemical Reac-
tion

-

r j Reaction Rates ( j = 1,2,3)

r1 = 5 ρcoal
Mcoal

exp
(

−6039
Ts

)
r2 =

1
1

rc2
+ 1

rm2

r3 =
1

1
rc3

+ 1
kymH2O

-

Cs Total Solid Phase Heat Capac-
ity

Cal/K.cm3

ht Convective Heat Transfer Coef-
ficient

Cal/sec.K.cm3

T Ignition Temperature K
Hs Solid Phase Heat Source Cal/Sec.cm3

L Length of the Reactor cm
m fi Mole Fraction of ith Gas(

m fi =
xi

∑11
i=4 xi

) -

Hi Heat of Combustion of ith Gas KJ/Mole
u Flow Rate of Inlet Gases Moles/cm2Sec
h Calorific Value of the Product

Gas
KJ/Mole

SIMULINK with a step size of 0.5 sec and the results of
the process of UCG with SSTA are compared with those
of the first order sliding mode (FOSM) control.

The UCG reactor is provided with a constant flow rate
of oxidants (u = 2× 10−4moles/cm2sec), at the injection
well, till 20,000 secs, in order to build sufficient calorific
value and prevent the saturation of the actuators (compres-
sors). The controller is brought into loop after 20,000 sec.

In Fig. 5(a) the calorific value of the product gas at-
tained at the production well is shown. This Figure elab-
orate that both algorithms (SSTA and FOSM) maintain a
calorific value of 113.831 KJ/mol. However, the zoomed
versions of the calorific values attained by SSTA and
FOSM, shown in Figures 5(b) and 5(c) respectively, dic-
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Fig. 5. (a) Reference tracking of the system for smooth
STA and FOSM controller. (b) Zoomed version
of calorific value attained by SSTA. (c) Zoomed
version of calorific value attained by FOSM con-
troller.

tate the robustness of SSTA. In Fig. 5(c) it can be seen
that the tracking performance of FOSM is disturbed by
the water influx (Fig. 3).

Figs. 6(a) and 6(b) respectively shows the control ef-
forts (profile of flow rate of oxidants at the injection well)
generated by FOSM control and SSTA. These figures
clearly separate the performance of the two control strate-
gies. SSTA proves to be a better one for following rea-
sons. Control effort for SSTA is chattering free (Smooth)
as compared to the high frequency oscillations in case of
FOSM control. Moreover, the control effort for FOSM vi-
olates the constraint set by (29) when perturbation ζ (Fig.
(3) reaches its peak value at approximately 33,000 secs,
whereas, the control effort produced by SSTA success-
fully copes the water influx, without violating constraint
(compressor limitation).

Figs. 7(a) and 7(b) show the sliding surface reached by
FOSM and SSTA respectively. In case of FOSM con-
troller the effect of perturbation is reflected in sliding sur-
face due to the saturation of control effort (Fig. 6(a)),
where as the sliding surface for SSTA is unaffected by the
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put) produced by FOSM (b) Molar Flow Rate pro-
duced by Smooth STA.
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perturbation and approximately stays at 0 KJ/mol (with
sliding accuracy of 10−9 [6]), for whole simulation time.

5. CONCLUSION

In this paper the analytic expressions are proposed for
gains and convergence time of SSTA for nominal as well
as the perturbed system. These objectives are achieved via
the introduction of a family of quadratic strict Lyapunov
functions. The analytic expressions of the convergence
time reveals the importance of the smoothing parameter
ρ . The SSTA converges to the origin in finite time, when
it is under the effect some bounded vanishing perturba-
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tions and ensures uniform ultimate boundedness when the
perturbations are non-vanishing.

This analysis can be used for many purposes, it gives
the freedom to design the gains of the controller for en-
suring a desired performance. The estimate of the conver-
gence time can be subjected to some optimization frame-
work to further improve the performance. Also, this anal-
ysis can be useful for structural improvement of SSTA.

The SSTA with the proposed analytic expressions, is
applied to the process of UCG. This is a highly nonlinear
process with numerous model uncertainties. The simu-
lation results reflect the effectiveness of the algorithm in
terms of robustness and performance.
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