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Abstract—Active cell balancing guarantees good performance
and long life of a battery pack. In this paper a high-fidelity model,
considering the static and dynamic parameters, is developed for
computing the balancing currents and power losses of an active
cell balancing network (ACBN). The model comprises any two
adjacent Li-ion cells connected in series and a bidirectional buck-
boost converter. This model is employed to design a nonlinear
model predictive controller (NMPC), which minimizes the balanc-
ing speed and power losses of ACBN. The stability of the closed-
loop system is proved using Lyapunov method. The cells’ state of
charge (SoC) levels required for NMPC are estimated by a state
dependent Kalman filter (SDKF). The control scheme is solved
using CasADi toolbox, employing the interior point optimizer
(Ipopt) algorithm. Despite the modeling mismatch, sensor noises,
and an urban dynamometer driving schedule (UDDS) input
current profile, the SoC difference stays in a legitimate range
of 2%. Moreover, it has been shown that for the same controller,
there is a 78.6% deviation in the balancing time if static and
dynamic model parameters (e.g. charging and discharging path
resistances, time delays, and time constants) are ignored.

Index Terms—Active cell balancing, nonlinear model predictive
control, bidirectional buck-boost converter.

I. INTRODUCTION

The battery pack of electric vehicles (EVs) is comprised of
series and parallel strings of cells to meet different current and
voltage demands. The issue of cell-to-cell imbalance arises in
series connected cells, which results in slower but persistent
degradation of the battery pack [1]. This issue is mitigated
by cell equalization methods, which are broadly categorized
as passive and active cell balancing methods. The former is
a dissipative method, while the latter is non-dissipative and
transfers the excess charge of one cell to other cell/s or battery
pack [2]. Active cell balancing methods have high balancing
efficiency and are implemented using power electronics cir-
cuits, such as switching capacitor networks, buck-boost and
flyback converters, etc, [3], [4].

According to the literature, cell balancing based on state of
charge (SoC) equalization is preferred over terminal voltage
based equalization methods [5]. The focus of this paper is
the model-based optimal control of an active cell balancing
network (ACBN). In literature the task of SoC equalization
has been taken up to achieve various objectives pertaining
to EVs and other applications. In [6] cell-to-cell balancing is
performed using a bidirectional Cuk converter. The optimiza-
tion problem is solved using sequential quadratic programming
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algorithm, which minimizes the balancing currents, and the
difference in SOC of cells with average SoC of cells in
the pack. The results are improved in [7] by incorporating
temperature dynamics. In [8], the authors employ active cell
balancing to solve range maximization problem for EVs using
reachability analysis. The solution is further improved by
using nonlinear model predictive control (NMPC) in [1],
[9]. Liu et al. [5] solve a multi-objective optimal control
problem–minimizing the balancing speed and power losses in
an ACBN, by employing NMPC, which exploits differential
flatness to solve pseudo spectral optimization problem. In [10]
an adaptive MPC is designed to mitigate the differences
in the terminal voltages of cells, which are estimated by
recursive least square method. Quan et al. [11] solve the
optimal control problem similar to [6] using conjugate gradient
method. In [4] cell balancing is employed to extend range of
an EV by formulating and solving three NMPC problems:
all cells follow the nominal cell trajectory, maximization of
SoC/voltage of the lowest cell and minimizing the difference
between highest and lowest SoC/voltage of cells. In [12], a
convex optimization problem is formulated to balance the SoC
of cells by simultaneously addressing single cell equalization,
thermal balancing and terminal voltage equalization problems.

In recent years, physics informed electro-chemical models
of a cell are also exploited for nonlinear optimal control of
active cell balancing. In [2], a single particle model with
electrolyte and temperature (SPMeT) dynamics is utilized
to formulate an NMPC problem, which minimizes various
conflicting costs. Vahid Azimi et al. [13] employ an SPM
model with aging and thermal dynamics to formulate and
solve a nonlinear optimal control problem for fast charging-
minimum degradation of an LiB.

Efforts have been made to include more accurate cell
models, however, detailed modeling of the network is often
ignored. It has been discussed in [3], that the performance of
ACBN is greatly influenced by static and dynamic parameters.
In this paper, high fidelity mathematical models are derived for
balancing currents and power losses of the ACBN, which takes
into account the effect of static and dynamic parameters as
shown in Section II. In the best of the authors’ knowledge such
detail modeling is often ignored in the paradigm of ACBN
control. The ACBN is comprised of bi-directional buck-boost
converter and a battery pack with any two adjacent Li-ion
cells connected in series. A first order nonlinear equivalent
circuit model (ECM) represents the dynamics of a cell. The
model is then employed to design an NMPC, which computes
the required duty cycles (for two switches) of the buck-boost



converter to equalize the SoC levels of cells. The stability
of the closed-loop system is also proved using Lyapunov
theory. The SoC levels required to design NMPC are estimated
using a state dependent Kalman filter (SDKF). In order to test
the robustness of the control technique practical considera-
tions like parametric variations, sensor noises, and an urban
dynamometer driving schedule (UDDS) input current profile
are also incorporated in the simulation study. The evaluation
results show that the controller keeps the SoC difference of
the cells within a prescribed limit of 2%.

The rest of the paper is organized in the following manner.
The mathematical modeling of the ACBN is presented in
section II, which is followed by NMPC and SDKF designs in
sections III and IV, respectively, and the paper is concluded
in section VI.

II. MATHEMATICAL MODELING OF ACTIVE CELL
BALANCING NETWORK

The active cell balancing of two series connected cells is
performed using bidirectional buck-boost converter, operated
in discontinuous current mode, as shown in figure 1, which
also shows a detailed interaction of an EV with ACBN. When
cell-1 has higher SoC, the MOSFET Q1 is turned on and the
excess charge is transferred to inductor L, which is then used
to charge cell-2 through diode D2 (parallel to Q2). Similarly,
excess charge in cell-2 is transferred to cell-1 through Q2 and
D1 (parallel to Q1). It is important to mention that Q1 and
Q2 can not be turned on simultaneously.
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Fig. 1: Interaction of electric vehicle with ACBN (Ie is UDDS
current, and Pm and Pe are mechanical and electrical powers,
respectively).

A. Mean Balancing Currents in ACBN

Fig. 2: Switching cycle of Qi and mean balancing current.

The switching period of Qi and the corresponding inductor
current iL is shown in figure 2, which is expressed as

iL =



0, 0 ≤ t ≤ td

vH
Rchi

(
1− exp (λi)

)
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(
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)
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τchi
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τdisi
, Rdisi = R0L +RL,

Rchi
= R0H +RL +Rds, τchi

= L/Rchi
, τdisi = L/Rdisi ,

where i = 1 and i = 2 represent cell-1 charging cell-2 and
cell-2 charging cell-1, respectively; vH , vL and R0H , R0L

represent open circuit voltages (V) and resistances (Ω) of
higher and lower SoC cells, respectively; VF is diode forward
voltage drop, τch and τdis are time constants (s) for charging
and discharging paths, respectively; td, t0 and T represent
dead time, time instant at which iL = 0, and switching time
period, respectively; duty cycle of Qi is denoted by ui, and L
represents the inductance of the inductor (H); and Rch, Rdis,
RL and Rds represent resistances of charging path, discharging
path, cell i, inductor and on-state switching, respectively.

When charge is transferred from cell-1 to cell-2 then ui =
u1, vH = v1 and vL = v2, whereas, ui = u2, vH = v2 and
vL = v1 when cell-2 charges cell-1.

Equation (1) can be integrated over the complete switching
period to yield mean currents for charging and discharging
modes of inductor
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where Ĩch and Ĩdis are mean currents (A) during charging and
discharging modes of inductor, respectively, and Ip is the peak
inductor current at t = uiT (cf. figure 2).

B. Power Losses in the Buck-Boost Converter

The total power losses in the ACBN are sum of the
following losses:

1) Conduction Power Losses: The power losses due to on-
state resistances of MOSFETs, diodes, parasitic resistances



of energy storage elements and internal resistances of cells
constitute the conduction losses, which are characterized as
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where Ibi , cf. (10), (11), is the current of cell-i, Pcon =
Pcon1

+ Pcon2
are conduction losses (W), and Ich and Idis

represent the effective RMS currents during charging and
discharging modes, respectively.

2) Switching Power Losses: As the buck-boost converter
is operated in discontinuous conduction mode, therefore, the
switching losses (Ptf = Ptf1

+Ptf2
) only consider the power

losses when MOSFETs are turned off

Ptfi
=

1

2T
vH Ĩdisitf , (5)

where tf is the fall time.
3) Reverse Recovery Power Losses in Body Diode: The

reverse recovery power loss associated with the body diode
Di is

PDrri
=

1

2T
vLIrritrr, (6)

Irri =

√
2Qrri

(
vL + VF

L

)
,

Qrri = t2rr

(
vL + VF

2L

)
,

where PDrr
= PDrr1

+ PDrr2
, Qrr, Irr and trr denote

the reverse recovery power loss, charge, current and time,
respectively.

4) Dead Time Power Losses: During dead time both Q1 and
Q2 are off and the inductor current keeps on flowing through
the body diodes

Ptdi
=

1

2T
VF Ĩdisitd, (7)

where Ptd = Ptd1
+Ptd2

represents dead time power loss and
td represents the dead time.

C. Equivalent Circuit Model of the Battery Pack

The battery pack has two series connected cells as shown
in figure 1. A simple ECM of a cell is selected which is
comprised of the internal resistance R0i in series with a

dependent voltage source representing the open circuit voltage
vi. The control-oriented model of the battery pack is given as

⃗̇x = f⃗(x⃗, u⃗) =

[
Ib1
η1

Ib2
η2

]T
, (8)

v⃗t = h⃗(x⃗, u⃗) =
[
v1 + Ib1R01 v2 + Ib2R02

]T
, (9)

Ib1 = −Ĩch1
(u1, x1) + Ĩdis2(u2, x1, x2) + Ie(t), (10)

Ib2 = −Ĩch2(u2, x2) + Ĩdis1(u1, x1, x2) + Ie(t), (11)

vi =

8∑
j=1

pjx
(8−j)
i , (12)

where x⃗ ∈ ℜ2 is the state vector representing SoC of
cell-1 (x1) and cell-2 (x2), respectively; u⃗ ∈ ℜ2 is
the control vector, which represents duty cycle of Q1

and Q2, respectively; v⃗t ∈ ℜ2 represents the terminal
voltages of the cells; ηi is capacity of cell-i (As); and p =
[88.56,−320.46, 472.36,−368.96, 166.57,−44.01, 7.18, 2.95].

III. NONLINEAR MODEL PREDICTIVE CONTROL OF
ACTIVE CELL BALANCING

The objective of the cell balancing controller is to minimize
|x̃| = |x1−x2|. As the control problem has to be solved in the
presence of multiple constraints on state and control variables,
therefore, we propose the following NMPC problem.

Let {ti}i≥0, such that ti+1 = ti + δ, where δ > 0 is the
sampling time. Now, the implementation of NMPC is carried
out in the following manner. The current SoC difference
x̃(ti) is obtained, then the following nonlinear optimal control
problem (NOCP) is solved to obtain optimal control ( ¯⃗µ) and
state (¯̃x) trajectories

min
x⃗,µ⃗

∫ ti+Tp

ti

(
Qx̃2 +RP 2

L

)
dT ,

subject to

⃗̇x− ⃗̃
f(x⃗, µ⃗) = 0, a.e. t ∈ [ti, ti + Tp],

x⃗(ti) = x⃗ti ,

µ⃗ ∈ [µ⃗
lb
, µ⃗

ub
] a.e. t ∈ [ti, ti + Tp],

x⃗(t) ∈ [x⃗
lb
, x⃗

ub
], a.e. t ∈ [ti, ti + Tp],

µ1µ2 = 0, a.e. t ∈ [ti, ti + Tp], (13)

where µ⃗ = u⃗−td/T , such that ⃗̃f(0, 0) = 0; Tp is the prediction
horizon (s); PL = Pcon + Ptf + PDrr

+ Ptd represents total
power losses; Q > 0, R > 0 are scalar weights: µ⃗

lb
, µ⃗

ub
,

x⃗
lb

and x⃗
ub

are lower and upper bounds on input µ⃗ and state
vector x⃗(t), respectively.

The closed loop input for interval [ti, ti+δ] is µ⃗∗ := ¯⃗µ(t
i
),

whereas, the remaining elements of ¯⃗µ are discarded. The
procedure is repeated for every sampling instant to solve the
NMPC problem.

The nominal stability of NMPC can be established by
proving that the cost functional in (13) decreases with time and



eventually vanishes. Let us consider the following candidate
Lyapunov functional

V (x̃, µ⃗) = Qx̃2 +RP 2
L ≤ Qx̃2 +Rw2, (14)

where V (x̃, µ⃗) is strictly positive definite.
The last constraint in (13) ensures that both Q1 and Q2

can not be turned on simultaneously, therefore, w = µ1–cell-1
charging cell-2 or w = µ2–cell-2 charging cell-1. Furthermore,
from the nominal mathematical model of the ACBN it can be
easily shown that |w| > |PL|. By substituting w = −Kx
(K ∈ ℜ is the state feedback gain) in (14) and taking its time
derivative yields

V̇ (x̃,Kx̃) ≤ 2Qx̃ ˙̃x+ 2RK2x̃ ˙̃x = −Γ|x̃ ˙̃x|, (15)

where Γ = 2Q + 2RK2 > 0, and from (8) it can be seen
that x̃ ˙̃x < 0, because the currents Ĩch and Ĩdis in (2) and (3)
are positive. Therefore, V̇ (x̃,Kx̃) is negative definite and the
nominal closed-loop system is stable.

The SoC levels of cells required for NMPC design are
estimated using a state dependent Kalman filter (SDKF).

IV. STATE DEPENDENT KALMAN FILTER

The design of SDKF is comprised of three steps: (i) repre-
senting the nonlinear model in (8) and (9) by state dependent
matrix form, cf. [14]; (ii) discretising the quasi-linear ECM
model and (iii) employing the conventional Kalman filter
algorithm to estimate x1 and x2. For observer design Ibi and
vt in (8) and (9) are measurable, therefore, the ECM for the
battery pack can be re-written as

⃗̇x = BI⃗ + ψ⃗(t), (16)

y⃗ =

[
vt1 − p8

vt2 − p8

]
= C(x⃗)x⃗+DI⃗ + ϕ⃗(t), (17)

where ψ⃗(t) is the process noise, ϕ⃗(t) represents the measure-
ment noise, I⃗ = [Ib1 Ib2 ]

T , and p8 = 2.95. The matrices B,
C(x⃗) and D(x⃗) are expressed as

B = diag

(
η−1
1 , η−1

2

)
, D = diag

(
R01 , R02

)

C(x⃗) =


diag

(
c1(x1), c2(x2)

)
, x⃗ ̸= 0,

diag

(
∇h1(x1),∇h2(x2)

)
, x⃗ = 0,

ci(xi) = ∇hi(xi) +

(
hi(xi)− xTi ∇hi(xi)

xTi xi

)
xi,

∇hi(xi) =
7∑

j=1

(8− j)pjx
7−j
i , (18)

where ∇hi(xi) is the gradient of hi with respect to xi. It
is pertinent to mention here that quasi-linearization is only
performed for (12), which results in state dependent matrix
C(x⃗) .

After performing the quasi-linear decomposition, the system
given in (16) and (17) is discretised with the sampling time δ

(same as in MPC design) to yield the following structure of
the SDKF (which is implemented according to algorithm 1)

⃗̂xk = Gk−1I⃗k−1 + ψ⃗k−1,

⃗̂yk = Ckx⃗k +Dk I⃗k + ϕ⃗k, (19)

where G = B(x⃗)δ, and ψ⃗k and ϕ⃗k are white, zero-mean,
uncorrelated noise processes with known covariance matrices
Qk and Rk, respectively, which are characterized as

ψ⃗k ∼ (0,Qk) , ϕ⃗k ∼ (0,Rk) , E
[
ψ⃗kψ⃗

T
j

]
= Qkδk−j ,

E
[
ϕ⃗kϕ⃗

T
j

]
= Rkδk−j , E

[
ϕ⃗kψ⃗

T
j

]
= 0,

where the Kronecker delta function δk−j = 1 if k = j and
δk−j = 0 if k ̸= j.

Algorithm 1 SDKF Algorithm

1: Initialization: the state vector
(
⃗̂x
)

and estimation error
covariance matrix (P ∈ ℜ2×2) are initialized as

⃗̂x+0 = E (x⃗0) ,

P+
0 = E

[(
x⃗0 − ⃗̂x+0

)(
x⃗0 − ⃗̂x+0

)T]
,

where the superscript + denotes a posteriori estimate,
which takes into account all the measurements up to time
k.

2: while 1 ≤ k ≤ kend do
3: Prediction: the a-priori estimates (which does not con-

sider current measurement) of SDKF gain K−
k , P−

k and
x̂−k are computed as

P−
k = Qk−1,

K−
k = P−

k C
T
k

(
CkP

−
k C

T
k +Rk

)−1
,

⃗̂x−k = G⃗̃Ik−1.

4: Correction: by using the current measurement the
estimated state and error covariance matrix are updated
as

⃗̂x+k = ⃗̂x−k +Kk

[
y⃗k −

(
Ck
⃗̂x−k +Dk

⃗̃I
)]
,

P+
k = (I2 −KkCk)P

−
k (I2 −KkCk)

T
+KkRkK

T
k .

5: k = k + 1
6: end while

V. RESULTS AND DISCUSSIONS

The implementation scheme considered for the simulation
studies is presented in figure 3. Based on the measurements
of v⃗t and I⃗ , SDKF reconstructs SoC levels of cells, which are
further utilized by NMPC to compute the duty cycle for the
buck-boost converter. The problem of active cell balancing
is solved in Matlab/Simulink. The nominal values of LG
18650HG2 cell (cf. [15]) and other ACBN parameters are
given in table I.
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Fig. 3: Control architecture for active cell balancing.

TABLE I: Nominal model parameters of ACBN

Parameter Value Parameter Value
T 20 µs td 2 µs

VF 0.3 V Rds 5.3 mΩ

tf 8 ns trr 28 ns

RL 0.01 Ω L 6 µH

R0i 0.025 Ω ηi 10800 As

The practical considerations to asses the robustness of the
control scheme are: i) R0i = 0.03Ω and ηi = 9000As are used
in the ACBN, whereas, nominal parameters are used in SDKF
and NMPC; ii) the noises for voltage and current sensors are
ϕi ∼ N (0, 10−4) and ψi ∼ N (0, 0.01), respectively; iii) a
UDDS current profile (Ie), cf. [16] is provided to ACBN.
Moreover, the step size for performing simulations is δ = 5 s.
These are the default simulation parameters unless otherwise
stated.

The NOCP in (13) is solved using CasADi [17], by tran-
scribing it into nonlinear program (NLP) by direct multiple
shooting method. The NLP is then solved usinf interior point
optimizer (Ipopt) algorithm. The parameters used in the NMPC
are Tp = 25 s, µilb = 0, µiub

= 0.3, xilb = 0.05 and
xiub

= 0.95.
The result in figure 4 shows the Pareto front of the two

competing sub-objectives–balancing speed and power losses.
The balancing speed is characterized by balancing time tb,
which is defined as the time taken by |˜̂x| to reach 0.02.
Whereas, average power loss P̄L over tb represents power
losses. The result in figure 4 is obtained by simulating 9
different combinations of Q and R (NMPC gains, cf. (13)), in
which Q varies from 6− 700 and R = 1. It can be seen from
the figure that for achieving higher balancing speeds, P̄L also
increases.
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Fig. 4: Pareto front between tb and P̄L for different values of Q.
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The performance of NMPC controller with two different
choices of the cost functions is compared in figure 5. In case (i)
(Q = 700, R = 1) power losses are almost ignored, whereas,
in case (ii) (Q = 50, R = 1), PL is relatively given more
weight. As x̂1 > x̂2, therefore, for both cases only Q1 is on.
The controller balances the SoC levels with tb = 2425 s and
P̄L = 59.17 mW for case (i), and tb = 2770 s and P̄L = 49.62
mW for case (ii). As the control is relatively expensive in case
(ii), therefore, the balancing time is increased by 14.2% and
the power losses are decreased by 16.1% as compared to case
(i). Moreover, the fluctuations in Ie are also reflected in the
duty cycle of case (ii), however, this is not an issue because i)
there is no effect on ˜̂x (figure 5d), and ii) the power converters
are normally operated at very high frequency.

The results in figure 6 show the performance of SDKF
for case (i) discussed previously. The initial values for the
states of SDKF are ⃗̂x(0) = [0.4 0.1]T , while the model is
initialized with x⃗(0) = [0.5 0.2]T . The tuning parameters of
SDKF are selected as P0 = I2×2, Q = diag(10−3, 10−3)
and R = diag(0.25, 0.25). The results show that SDKF
filters out the noise in v⃗t (figure 6b) and gives a good state
estimation (figure 6a). When estimated states converge to their
true values, the estimation error does not exceed |0.8|% for
both states.

The results in figure 7 are obtained with NMPC controller
having Q = 700 and R = 1, with three different cases: i) Case
(a) ignores all the static and dynamic parameters of the ACBN,
which include Rch, Rdis, VF , and the time constants defined in
section II; ii) in Case (b) real parameters are used, however,
parametric uncertainties, and sensor noises are ignored; and
iii) Case (c) has same simulation parameters as Case (i) in
figure 5. Due to smaller values of ηi in the ACBN for Case (c),
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the rate of change of SOC is higher (cf. (8)), which results in
smaller tb, larger currents and P̄L as compared to Case (b). In
case of ideal parameters (Case (a)), the balancing speed is the
fastest with zero energy losses. For Case (a), the deviation in
tb from Case (b) and Case (c) is 78.6% and 74%, respectively.
This result shows that the controller does not have an absolute
control over tb and P̄L. Moreover, it’s essential to include
static and dynamic components in the modelling of ACBN
for accurate estimation of performance metrics, e.g., tb and
P̄L.
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Fig. 7: tb and P̄L for different ACBN parameters with same NMPC.

VI. CONCLUSIONS

The paper presents a bi-directional SoC equalization based
NMPC of an ACBN of any two adjacent cells connected in
series. A detailed mathematical model that takes into account
the effect of static and dynamic parameters on mean balancing
currents and power losses is developed. The robust control
scheme successfully meets the balancing criterion, despite the
modeling uncertainties and a realistic UDDS current profile.
Using Lyapunov theory, the stability of closed-loop system
has also been proved. The Pareto front analysis confirms
that the conflicting costs of achieving higher balancing speed
and reducing energy loss can not be satisfied simultaneously,
therefore, a trade-off, depending upon the application is to be
made. Furthermore, the simulation results show that i) instead
of energy losses, NMPC should give more weightage to SoC
balancing to compensate for fluctuations in external currents;
ii) the controller, at its best can only balance the SoC levels of
cells, and it does not have a complete control over tb and P̄L,
which are also dependent on the static and dynamic parameters
of the ACBN; and iii) there is a deviation in tb if static and
dynamic parameters of the ACBN are ignored.

Due to the modular nature of the proposed cell-to-cell
balancing approach, it can be easily extended for a string of
n series connected cells.
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