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Abstract—The control of highly complex and nonlinear un-
derground coal gasification (UCG) process is a challenging job.
As the process occurs under the surface of the earth, so it is
either impossible or very expensive to measure all the important
parameters of the process, which further complicates the control
design. The input of the UCG process is the flow rate of the
injected air and the heating value of the product gas is the
output. In this work a sliding mode control (SMC) algorithm
is designed for a simplified model of an actual UCG process in
order to maintain a desired constant heating value. The relative
degree of the sliding variable is zero, because the input is readily
available in it. As the heating value is the only measurement
available, the trivial control design is not possible. Therefore, the
time derivative of the control is selected as the system input,
then the relative degree becomes one and the conventional SMC
may be implemented. This approach let us maintain the output
at the desired level and provides insensitivity with respect to
different types of uncertainties. The stability of the zero dynamics
is proved, which ensures that the overall system is stable. The
simulation results demonstrate the robustness of the SMC design
against the input disturbance and the modeling inaccuracies.

Index Terms—Underground coal gasification (UCG) control,
sliding mode control (SMC), relative degree and zero dynamics

I. I NTRODUCTION

COAL was first mined in Europe as early as 13th century,
but it has been used as a source of energy for approxi-

mately 3 millenniums. During the industrial revolution in the
18th century it became an important source of energy. The
biggest challenge for the coal industry was the environmental
pollution caused by the combustion of coal, which produces
oxides of sulphur and nitrogen. The detrimental impact of coal
combustion on the environment was addressed by the advent of
clean coal technologies which allow the removal of harmful
gases before, during and after the burning of coal [1]. The
gasification is one of the clean coal technologies in which
coal is converted into a gas mixture. The high operating
pressure of the gasification process assists the separationof
the harmful gases [2]. Coal can either be gasified by extracting
and purifying it on the surface or by the underground coal
gasification (UCG) technology.

In UCG the coal is gasified underground. The oxidants
(air and steam (H2O (g)), or oxygen (O2) and H2O (g) or
only air) are injected from one well which chemically react
with coal to produce synthesis or syngas, which is collected
from the other well. The synthesis gas (syngas) is a mixture
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of carbon monoxide (CO), hydrogen (H2), methane (CH4)
and higher hydrocarbons (CnHm), which can be used in
production of liquid fuels, industrial heating or as a fuel for
power generation [3]–[5]. UCG is normally used for those coal
fields which are either economically not feasible for mining
or are not accessible by the conventional technology [1].

The key indicators for the success of a UCG process are:
calorific value of the syngas and the resource recovery of the
coal seam [5], the later mostly depends on the configuration of
the injection and production wells, where the former depends
upon the type and geology of coal, effects of different physical
and chemical phenomena occurring underground and operating
conditions of the process. For a UCG site with specific coal
type and well configuration, a constant and desired heating
value of the syngas can be attained by optimizing the op-
erating conditions. A mathematical model of the process is
of paramount importance for determining the most suitable
operating conditions. The research for the development of a
mathematical model for a UCG process has been in progress
since the early 20th century, which resulted in a number of
mathematical models [6]–[15], but even the most complex
three dimensional (3D) models do not perfectly describe the
dynamics of the complex physicochemical process.

The control of UCG is an emerging area of research. In [16],
[17] a lab scale UCG setup is controlled by some versions
of the conventional PID controller [18]. However, the control
of a field scale UCG process is a formidable job, especially
considering the process nonlinearities and underground distur-
bances. Some other factors also make the control of the process
a challenging job. The mass and heat transfer phenomena
in UCG can be effectively modeled by partial differential
equations (PDEs) with at least two independent variables, one
each for time and length, and control of such systems is not a
trivial task [19], [20]. Another factor which increases difficulty
in control design is the unavailability of the measurement
of important model parameters. As the process of UCG
takes place underground, and it is either impossible or very
expensive and difficult to install sensors at different locations
in the reactor, so normally the available measurement is molar
fraction of the product gases recovered at the production well.
Therefore, for UCG system with nonlinearities, underground
disturbances and uncertainties a control technique is required
which can keep a constant desired heating value of syngas,
in spite of fact that design procedure is performed based on
approximate model. One such technique is the sliding mode
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control (SMC) [21], [22]. In [23] and [24] a first and second
order SMC algorithms are implemented on two different UCG
process models to maintain a constant heating value at the
production well respectively. The time domain mathematical
model in [23] is a very crude representation of the actual
UCG process, as it assumed that the input, output and all
the chemical reactions occur at the same location along the
length of the reactor. The work in [24] uses a validated model
of actual UCG process [25], but during the control design it
is assumed that the total concentration of all the gases stays
constant through out the length of the reactor, which is not
true.

The contribution of this paper is twofold: development of
a control oriented model by incorporating certain assumptions
in the model of [25], and design of SMC for the model.
The model simplifications help in the analytical design of the
controller. The SMC algorithm is designed for the model to
control the heating value of the product gases. The design idea
of SMC implies two steps:

1) Selecting switching surface such that sliding mode along
this surface, governed by reduced order equation exhibits
the desired properties.

2) The control input should enforce sliding mode.

In the paper such surface is selected and then discontinuous
control is designed, such that for any initial condition the
state reaches the surface after finite time interval and then
sliding mode appears with desired dynamics. The designed
control solves the main problem to maintain the variable under
control at desired level. However, the system is acceptable
only if overall motion in sliding mode is stable. In literature
this dynamics is called internal or zero dynamics [26]. It is
shown in the paper that zero dynamics for the process under
control are stable. The above results were obtained for the
simplified model. As the simulation results show, the control
demonstrates the same properties being applied to the actual
model of the process.

The rest of the article is arranged as follows: The compo-
nents of the UCG control system are explained in Section II,
the simplifications introduced for the model based control
of the process are discussed in Section III, the problem
statement is presented in Section IV, the control procedure
is outlined in Section V, the steps involved in the design of
SMC are demonstrated in Section VI, numerical solution of
the closed loop system is detailed in Section VII, Section VIII
discusses the simulations results and the article is concluded
in Section IX.

II. COMPONENTS OF THEUCG CONTROL SYSTEM

The block diagram in Fig. 1 shows the components of UCG
control system. The controller computes the flowrate of the
air: u (moles/cm2/s) based on the measured (ym) and desired
(yr) heating values (KJ/m3) of the product gases coming out
of the UCG system. The heating valuey is computed by the
gas analyzer after measuring the composition of the product
gases recovered from the production well. The procedure for
calculatingy is given in Appendix B. The flow rate of the
steamδ acts as an input disturbance for the system. The value

of δ is unknown but it needs to be in a certain range for
the process to be operational [24], [25], [27]. The control
valve and gas analyzer are modeled with first order transfer
functions with time delays, which are given in Eqs. (1) and
(2) respectively.

G1(s) =
exp (−τda

s)

τas+ 1
(1)

G2(s) =
exp (−τdg

s)

τgs+ 1
(2)

whereτa and τg are the time constants (s) for the control
valve and gas analyzer systems respectively,τda

and τdg

represent the input and output delays of the system andy
is the heating value of the product gases.

δ

u gasesyr

-

+
SMC G1(s)

UCG
System

yG2(s)
ym

+
+

Control Valve

Gas Analyzer

u0

Fig. 1. Block diagram of UCG control system

A. UCG system

The reactor model of UCG consists of coal, char and
eight gases: CO, carbon dioxide (CO2), H2, H2O (g), CH4,
nitrogen (N2), O2 and tar. The tar is used to close the
stoichiometry of coal pyrolysis reaction [8], and the traces
of higher hydrocarbons (CnHm) produced are also included
in it. The schematic of the UCG process is shown in Fig. 2.
Air at particular flowrateu0 enters the UCG reactor from the
injection well (x = 0), while the product gases produced as
the result of various oxidation and gasification reactions are
recovered from the production well (x = L).

 Surface

 Water table

Over burden

Coal seam

Under burden

Injection well Production well

Air flowrate (u0) Product gases

x=0 x=LL

Fig. 2. Schematic of UCG process
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III. S IMPLIFICATIONS CONSIDERED FOR THE MODEL

BASED CONTROL

In order to simplify the control design the dynamics of
control valve and gas analyzer are ignored, which implies
u0 = u and y = ym. Some simplifications are also made
in the actual mathematical model of the UCG reactor.

A. Control oriented model of UCG

The complete model and assumptions considered for its
simplification are detailed in Appendix A. The following PDEs
represent the states of the UCG system:

∂ρ1
∂t

= −M1R1 (3)

ρ1 (0, x) = ρ10(x), 0 ≤ x ≤ L

∂ρ2
∂t

=M2

[
|as2,1 |R1 −R2(u)−R3(u)

]
(4)

ρ2 (0, x) = ρ20(x), 0 ≤ x ≤ L

∂Ts
∂t

=
B
∂2Ts
∂x2

+ h(T − Ts)− q1R1 − q2R2(u)− q3R3(u)

(cp1ρ1 + cp2ρ2)
(5)

Ts (0, x) = Ts0(x), 0 ≤ x ≤ L

∂Ts
∂x

(t, 0) =
∂Ts
∂x

(t, L) = 0, t ≥ 0

where,

R1 = 5
ρ1
M1

exp

(−6039

Ts

)

(6)

R2 =
vgC7

u+ δ
CR2 (7)

C7 = 0.21
u

vg
exp

(

− |a7,2|
u+ δ

∫ x

0

CR2dx

)

CR2 =

9.55× 108ρ2P exp

(−22142

Ts

)

ky

M2ky
√
Ts + 9.55× 108ρ2P exp

(−22142

Ts

)

R3 =
δ

δ + u
CR3 (8)

CR3 =
kyP

2ρ2E1

P 2E1ρ2 + kyM2 (P + E2)
2

E1 = exp

(

5.052− 12908

Ts

)

E2 = exp

(

−22.216 +
24880

Ts

)

whereρ1 (t, x) andρ2 (t, x) are densities of coal and char
(g/cm3), M1 and M2 are molecular weights of coal and
char (g/mol),t and x are variables for time (s) and length
(cm), L = 2500cm is the length of the reactor,as2,1 is the
stoichiometric coefficient of char in coal pyrolysis reaction,
Ts (t, x) and T are solid and gas temperatures (K),h is the
heat transfer coefficient (cal/s/K/cm3), qi is the heat of reaction
i (cal/mol),B is a constant depending on the coal bed porosity
and thermal conductivity of coal and char (cal/cm/s/K),vg

is the superficial velocity of gases (cm/s),cp1
and cp2

are
the heat capacities for coal and char respectively (cal/g/K),
Ri (ρ1, ρ2, Ts, u) is rate of the chemical reactioni, with
i = 1, 2, 3 represents pyrolysis, char oxidation and steam
gasification respectively,ai,j is the stoichiometric coefficient
of gas i in reaction j and Hi is the heat of combustion
(KJ/m3) of gas i with i = 1, 3, 5, 8 represents CO, H2, CH4

and tar respectively,C7 is the distribution of O2 concentration
(mol/cm3) alongx, a7,2 is the stoichiometric coefficient of O2
in char oxidation reaction,P is the pressure of gases (atm) and
ky is the mass transfer coefficient (mol/cm3/s).

The concentration of the gases at the production well are
given by Eqs. (49) and (50). As the dynamics of the gas
analyzer are ignored, therefore,y = ym is given by Eq. (9)

y =
100

(

α
∫ L

0
R1dx+ β

∫ L

0
R3dx

)

γ
∫ L

0
R1dx+ η

∫ L

0
R3dx+ ζ

∫ L

0
R2dx+ 0.79

u

vg

(9)

α =
1

vg
(a11H1 + a31H3 + a51H5 + a81H8)

β =
1

vg
(a13H1 + a33H3)

γ =
1

vg
(a11 + a21 + a31 + a51 + a81)

η =
1

vg
(a13 + a33)

ζ =
a2,2
vg

The complete derivation of Eq. (9) is given in Appendix. B.

IV. PROBLEM STATEMENT

The objective of the research is to design the control for the
UCG process, which maintains the heating value at the desired
level. The control problem should be solved in the presence of
modeling inaccuracies and external disturbance. Therefore, the
control problem can be rephrased as to makey = yr, in the
presence of external disturbanceδ and modeling inaccuracies.
Due to the fact thaty is the only measurement available [24],
[25], the job of the control system design becomes even more
challenging.

V. OUTLINE OF THE DESIGN PROCEDURE

1) The sliding variables is selected, such that sliding mode
has desired properties. In arbitrary finite dimensional
system with statex ∈ <n, sliding mode appears if
valuess (x) andṡ (x) have different signs. It meansṡ (x)
should depend on discontinuous control.

2) Discontinuous control is selected to enforce sliding
mode based on the above condition:s (x) and ṡ (x)
should have different signs.

3) Analysis of zero dynamics.
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VI. CONTROL DESIGN

A. Selection of sliding variable

The sliding variable is selected in order to keep the heating
value at a desired constant level.

s = yr − y (10)

In order to meet the desired objective we needs = 0 =⇒
y = yr, and then control can be designed by substituting
Eq. (9) in Eq. (10).

100
[

α
∫ L

0
R1dx+ β

∫ L

0
R3dx

]

γ
∫ L

0
R1dx+ η

∫ L

0
R3dx+ ζ

∫ L

0
R2dx+ 0.79

u

vg

= yr (11)

σ1 + σ2
δ

u+ δ
− σ3

u

u+ δ
− σ4u = 0

u2σ4 + u (−σ1 + σ3 + δσ4)− δ (σ1 + σ2) = 0

u1 =
−b+

√
b2 − 4ac

2a

u2 =
−b−

√
b2 − 4ac

2a
where,

a = σ4

b = −σ1 + σ3 + δσ4

c = −δ (σ1 + σ2)

σ1 = (100α− γyr)

∫ L

0

R1dx

σ2 = (100β − ηyr)

∫ L

0

CR3dx

σ3 = 0.21ζyr

∫ L

0

CR2dx

σ4 = 0.79
yr
vg

where u1 and u2 are real as
(
b2 − 4ac

)
> 0, also√

b2 − 4ac > b & a > 0 ∀t, and only valid solution isu1,
because the molar flow rate of the air can not be negative.

However, the trivial control design is not realizable, be-
cause the right hand side ofu1 contains state variables and
miscellaneous process parameters which are not measurable.
So we try to overcome this problem by enforcing sliding
mode and inserting integrator in the input, such thatu̇ = ν
and ν = −κ sign (s) , κ ∈ R+. Therefore,ṡ depends on
discontinuous controlν and necessary control can be found
using sliding mode as shown in Fig. 3. Moreover, this approach
does not need the information about system’s states. Further,
sliding mode can be enforced withy = yr by a proper choice
of gain κ.

It is required to find derivative of the sliding variable in the
form ṡ = νφ+ θ, whereφ andθ are state functions.

yyr

-

+ UCG

System

s u

Fig. 3. SMC design for UCG system

ṡ = ẏr − ẏ (12)

ẏ =
100

D2

(

DṄ −NḊ
)

where,

N = α

∫ L

0

R1dx+ β

∫ L

0

R3dx

D = γ

∫ L

0

R1dx+ η

∫ L

0

R3dx+ ζ

∫ L

0

R2dx+
0.79

vg
u

Ṅ = α

∫ L

0

Ṙ1dx+ β

∫ L

0

Ṙ3dx

Ḋ = γ

∫ L

0

Ṙ1dx+ η

∫ L

0

Ṙ3dx+ ζ

∫ L

0

Ṙ2dx+
0.79

vg
u̇

where,

Ṙ3 =

(
δ

u+ δ

)

˙CR3 + CR3
d

dt

(
δ

u+ δ

)

=

(
δ

u+ δ

)

˙CR3 +
CR3

(u+ δ)
2

(

uδ̇ − δu̇
)

Ṙ2 = 0.21
d

dt

(
uCR2Eu

u+ δ

)

= u̇ω + ψ

where,

Eu = exp

(

− |a7,2|
u+ δ

∫ L

0

CR2dx

)

ω =
|a7,2|uCR2Eu

∫ L

0
CR2dx

4.762 (u+ δ)
3 +

δEu

∫ L

0
CR2dx

4.762 (u+ δ)
2

ψ =
uEuδ̇CR2

∫ L

0
CR2dx

4.701 (u+ δ)
3 − uEuδ̇CR2

4.762 (u+ δ)
2

+
uEu

˙CR2

4.762 (u+ δ)

By substitutingẏr = 0 (yr is constant) anḋy in Eq. (12),
the closed form expression forṡ takes the desired form

ṡ = νφ+ θ, u̇ = ν (13)

where,

φ = 100
Nϕ

D2

θ =
100

D2
[N (ϑ1 + ϑ2)−Dϑ3]
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where,

ϕ =
0.79

vg
+

∫ L

0
CR3dx

(u+ δ)
2 (β − δ) + ζ

∫ L

0

ωdx

ϑ1 =

∫ L

0

Ṙ1dx (γ − α) + ζ

∫ L

0

ψdx

ϑ2 =
η

(u+ δ)

[

uδ̇
∫ L

0
CR3dx

(u+ δ)
+ δ

∫ L

0

˙CR3dx

]

ϑ3 =
β

(u+ δ)

[

uδ̇
∫ L

0
CR3dx

(u+ δ)
+ δ

∫ L

0

˙CR3dx

]

The functionφ = 100
Nϕ

D2
> 0, ∀t ≥ 0, becauseN , D

andϕ in Eqs. (12) and (13) depend uponR1, R2, R3, u, δ
andvg which are always positive. Moreover, the constantsα,
β, γ, η and ζ in Eq. (9) are also positive andβ >> δ in
ϕ. The functionφ (t) is bounded byΦl and Φu such that:
0 < Φl ≤ φ (t) ≤ Φu, and θ (t) is upper bounded byΘu:
‖θ (t)‖ ≤ Θu.

As φ (t) > 0, ∀t ≥ 0, therefore sliding mode can be en-
forced by selecting a suitable value of discontinuous controller
gain κ.

B. Enforcing sliding mode

In order to prove the existence of sliding mode a positive
definite Lyapunov function is chosen and its time derivativeis
found.

V =
1

2
s2 (14)

V̇ = sṡ

= s (νφ+ θ)

= s (−κ sign (s)φ+ θ)

≤ |s| (−κΦl +Θu)

If κ =
τ +Θu

Φl

with τ ∈ R+, then the derivative of

the Lyapunov function is negative definite, and sliding mode
exists.

V̇ ≤ −τ |s| (15)

Even more, sliding mode occurs after a finite time inter-
val [28], and the main control problem is solvable.

C. Stability of the zero dynamics

The relative degreer of sliding variables is zero, because
u is readily available ins. Therefore, all the state equations
in Section III-A constitute the zero dynamics of the system
with u = u1 (Eq. (11)), which makess = 0 [26]. After the
establishment of sliding mode it is mandatory to check whether
the motion of the system called zero dynamics is stable.

The zero dynamics are comprised of following set of
equations, aftert ≥ tss when s = 0. The Eqs. (16), (17)

and (18) are obtained by replacingRi (ρ1, ρ2, Ts, u) by

R̃i

(

ρ̃1, ρ̃2, T̃s, u1

)

in Eqs. (3), (4) and (5).

∂ρ̃1

∂t̃
= −M1R̃1 (16)

∂ρ̃2

∂t̃
=M2

(

|as2,1 |R̃1 − R̃2 − R̃3

)

(17)

∂T̃s

∂t̃
=

1

Cs

[

B
∂2T̃s
∂x2

+ h(T − T̃s)−Hs

]

(18)

where,

Cs = cp1ρ̃1 + cp2ρ̃2

Hs = −|q1|R̃1 − |q2|R̃2 + |q3|R̃3

wheret̃ = t− tss andHs is the heat source generated from
the chemical reactions. Since coal pyrolysis and char oxidation
reactions are exothermic in nature, hence there heat of reaction
is negative [25].

The boundedness of the zero dynamics is investigated in the
subsequent paragraphs.

The solution of Eq. (16) is given as:

ρ̃1
(
t̃, x
)
= C exp

(
−5E3t̃

)
(19)

where,

C (x) = ρ̃1 (0, x)

E3(x) ≤ exp







−6039

max
t̃≥0

T̃s
(
t̃, x
)







It is important to note that for0 < T̃smin ≤ T̃s(t̃, x) ≤ ∞,
the distributionρ̃1 (0, x) exponentially decays with time.

In order to evaluate the boundedness ofρ̃2 and T̃s, it is
important to show thatR̃1, R̃2, R̃3 andu1 are bounded. The
Eqs. (6), (7) and (8) show that the reaction rates are dependent
on ρ̃1, ρ̃2 and T̃s. It has been proved in Eq. (19) that̃ρ1 is
stable, which also implies the stability of̃ρ2, becauseρ̃1 is
decomposed by coal pyrolysis reaction to yieldρ̃2 and product
gases, therefore, for law of conservation of mass to hold:

max
0≤x≤L

t̃≥0

ρ̃2(t̃, x) < max
0≤x≤L

t̃≥0

ρ̃1(t̃, x)

Now it can be inferred from Eqs. (6), (7) and (8) that for
any T̃s: 0 < T̃smin ≤ T̃s(t̃, x) ≤ ∞, the reaction rates are
bounded. The inputu1 is also bounded as it is the function of
the reaction rates (Eq. (11)).

Th complete solution of Eq. (17) is found by rewriting it in
the following form, which is obtained by substituting Eqs. (7)
and (8) in Eq. (17).
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∂ρ̃2

∂t̃
+ ρ̃2ξ = χ (20)

where,

χ(x) ≤ |as2,1 |M2R̃1

∣
∣
max
t̃≥0

Ts(t̃,x)

ξ(x) ≤
(

0.21u1ẼuΠ1

δ + u1
+

δΠ2

δ + u1

)∣
∣
∣
∣
∣
max
t̃≥0

Ts(t̃,x),U1,∆

Π1 =

9.55× 108P exp

(−22142

T̃s

)

ky

M2ky
√

T̃s + 9.55× 108ρ2P exp

(−22142

T̃s

)

Π2 =
kyP

2Ẽ1

P 2Ẽ1ρ2 + kyM2

(

P + Ẽ2

)2

Ẽu = exp

(

− |a7,2|
u1 + δ

∫ x

0

˜CR2dx

)

where 0 < u1 ≤ U1, 0 < δ ≤ ∆, Ẽ1 = E1(T̃s), Ẽ2 =
E2(T̃s) and ˜CR2 = CR2(T̃s). The parametersCR2, E1 and
E2 are given in Eqs. (7) and (8).

Now (20) can be solved as a linear PDE.

Let, $
(
t̃
)
= exp

(∫

ξdt̃

)

∂ρ̃2

∂t̃
$
(
t̃
)
+$

(
t̃
)
ρ̃2ξ = χ$

(
t̃
)

∫
d

dt̃

[
ρ̃2 exp

(
ξt̃
)]
dt̃ = χ

∫

exp
(
ξt̃
)
dt̃

ρ̃2
(
t̃, x
)
=
χ
(
t̃, x
)

ξ
(
t̃, x
)

︸ ︷︷ ︸

S1

+C exp
[
−ξ
(
t̃, x
)
t̃
]

︸ ︷︷ ︸

S2

(21)

where,

C (x) =

[

ρ̃2 (0, x)−
χ (0, x)

ξ (0, x)

]

Before investigating the solution of̃ρ2(t̃, x) in (21), a brief
description of the reaction zone [25] within the UCG reactor
is mandatory. The reaction zoneΩ is a region along the length
of the reactor, where all the chemical reactions occur, when
ρ̃1, ρ̃2 > 0 then: x = 0 < xr ≤ Ω ≤ xp < x = L. The
boundary ofΩ towardsx = L is xp which represents the
pyrolysis front, whereasxr towardsx = 0 corresponds to the
reaction front. The pyrolysis reaction occurs in the proximity
of xp with rateR̃1, yielding char and product gases. The char
produced by pyrolysis reaction spans wholeΩ. The region
beyondxp contains unreacted coal, while the region before
xr contains ash produced from the burnt coal and char. The
values ofR̃2 andR̃3 are only significant nearxr, becauseT̃s
has its maximum value here.

Now it can be inferred from (21) that̃ρ2 is produced near
xp with rate determined byS1. Theρ̃2 is consumed byR̃2 and
R̃3 nearxr as suggested byS2. The reaction zoneΩ moves
towardsx = L with time, as the coal and char are continuously

consumed by the reactants: O2 and H2O (g). Therefore, when
all the coal is consumed in the reactor then production ofρ̃2
is ceased and it is only consumed aroundxr:

ρ̃2
(
t̃, x
)
=

[

ρ2 (0, x)−
χ (0, x)

ξ (0, x)

]

exp
(
−ξt̃

)

The heat equation in (18) can be rewritten as:

Cs
˙̃Ts = BT̃s

′′ − hT̃s + hT (x) +Hs (22)

with,

T̃s(0, x) = T̃s0(x)

T̃s
′(t̃, 0) = T̃s

′(t̃, L) = 0

where ˙̃Ts =
∂T̃s

∂t̃
, T̃s

′ =
∂T̃s
∂x

and T̃s
′′ =

∂2T̃s
∂x2

.

The solution of Eq. (22) is acceptable if it is not unstable,
strictly speaking we need to show that the solution is bounded.
Formally speaking we have to deal with the analysis of a
complex nonlinear system, sinceHs depends onT̃s. But as
it has been shown previously that all the reaction rates are
bounded for any value of̃Ts, henceHs is also bounded.
Therefore, our problem may be reformulated in the following
way. It should be shown that solution to the linear PDE:

˙̃Ts =
1

Cs

[

BT̃s
′′ − hT̃s + hT (x) + G(t̃, x)

]

(23)

where,

|G(t̃, x)| ≤ G0, G0 ∈ <+

can be represented in the following form:

T̃s = ∆T̃s + T̃sx + T̃sd (24)

where∆T̃s corresponds to the solution without the inputs
T (x) and G, T̃sx is the forced component defined byT (x)
and T̃sd is the forced part which depends on the disturbance
G(t̃, x).

The boundedness of all the solution components in Eq. (24)
is investigated independently.

Consider the homogeneous heat equation:

Cs∆
˙̃Ts = B∆T̃s

′′ − h∆Ts (25)

with,

∆T̃s(0, x) = ∆T̃s0(x)

∆T̃s
′(t̃, 0) = ∆T̃s

′(t̃, L) = 0

The stability of Eq. (25) is investigated by the Lyapunov
functional:

V =
1

2

∫ L

0

Cs∆T̃s
2
dx (26)
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The time derivative ofV is given as:

V̇ =

∫ L

0

∆T̃sCs∆
˙̃Tsdx

︸ ︷︷ ︸

V̇1

+
1

2

∫ L

0

∆T̃s
2
Ċsdx

︸ ︷︷ ︸

V̇2

(27)

where,

V̇1 = B

∫ L

0

∆T̃s

(

∆T̃s
′
)′

dx− h

∫ L

0

∆T̃s
2dx

= −B
∫ L

0

(

∆T̃s
′
)2

dx− h

∫ L

0

∆T̃s
2dx

V̇2 =
1

2

∫ L

0

∆T̃s
2
(
cp1 ˙̃ρ1 + cp2 ˙̃ρ2

)
dx

= −
(
M1cp1 − |as2,1 |cp2M2

)

2

∫ L

0

R̃1∆T̃s
2dx

− M2cp2
2

∫ L

0

∆T̃s
2
(

R̃2 + R̃3

)

dx

whereM1cp1 > |as2,1 |cp2M2.
As the derivative of the Lyapunov functional in Eq. (27) is

strictly negative, hence∆T̃s is asymptotically stable.
The following boundary value problem is solved to yield

T̃sx

BT̃s
′′
x − hT̃sx + hT (x) = 0 (28)

T̃s
′
x(t, 0) = T̃s

′
x(t, L) = 0

The gas temperatureT (x) is obtained by solving the linear
ODE in Eq. (42)

T (x) = T (0) exp (−λx) + λ

∫ x

0

exp {−λ (x−X )}T̃s(X )dX
(29)

whereλ =
h

vgCg

is a constant

Eq. (28) can be rewritten in the following form by substi-
tuting h(T − T̃s) = −vgCgT

′ from Eq. (42)

BT̃s
′′
x − vgCgT

′ = 0 (30)

By differentiating Eq. (29) with respect tox and substituting
T ′ in Eq. (30) yields the nonhomogeneous boundary value
problem:

BT̃s
′′
x − hT̃sx = −Λexp (−λx) (31)

whereΛ = h
[

T (0) + T̃s(0, 0)
]

is a constant

The overall solution of Eq. (31) is:̃Tsx = T̃sc + T̃sp.
The complementary solutioñTsc is obtained by solving the
following equation:

BT̃s
′′
x − hT̃sx = 0 (32)

The characteristic polynomial for the second order ODE is:

r2 − h

B
= 0, which yieldsr = ±

√

h

B
. The general form of

T̃sc is given as:

T̃sc = C1 exp

(√

h

B

)

+ C2 exp

(

−
√

h

B

)

(33)

After incorporating the boundary conditions,̃Tsc = 0, as
C1 = C2 = 0.

Let the particular solution be:̃Tsp = A exp (−λx). Now by
substitutingT̃sp in Eq.(31) the value of constantA is obtained

BAλ2 exp (−λx)− hA exp (−λx) = −Λexp (−λx)

A = − Λ

λ2B − h
(34)

The solutionT̃sx is given as:

T̃sx = − Λ

λ2B − h
exp (−λx) (35)

Therefore, the forced responsẽTsx due to T (x) is also
bounded.

As the disturbanceG in Eq. (22) is bounded, therefore,̃Tsd
is also bounded. The boundedness ofT̃sd can be shown if
it is represented in the modal form [29]. All the solution
components of Eq. (24) are bounded, therefore,T̃s stays
bounded throughout the process of gasification.

The results in (19), (21) and boundedness ofT̃s show that
the zero dynamics of the UCG process are bounded and SMC
design is valid.

VII. N UMERICAL SOLUTION OF THE CLOSED LOOP

SYSTEM

In order to asses the robustness of SMC against modeling
inaccuracies and input disturbance, the dynamics of control
valve and gas analyzer, and the actual UCG reactor model
given in [25] is used in the simulations. The UCG control
system in Fig. 1 is solved in Matlab. The time delays asso-
ciated with control valve and gas analyzer are replaced with
first order Pade approximation [30]. For a time delay ofτd s
the first order Pade approximation forexp (−τds) is given by:

exp (−τds) ≈
−τds+ 2

τds+ 2

The UCG reactor model is solved in two modes: ignition
for first t0 s and then gasification fort > t0. The purpose of
the ignition is to heat up the coal seam so that it becomes
conducive to the gasification reactions. During the ignition
phase the only reaction taking place in the UCG reactor is
that of the coal pyrolysis, the gasification reactions do not
occur in this phase due to the absence of steam. The detail
description of the solution of the UCG reactor can be found
in [24], [25], but, in order to keep the interest of the readera
brief description of the solution strategy is given in TableI.
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TABLE I
SOLUTION OF THE UCG REACTOR MODEL

1. Input all the model parameters

2. Initialize the solid subsystem (Eqs. (3), (4) and (5)):
ρi (0, x) = ρi0 (x) andTs (0, x) = Ts0 (x)

3. Solve gas Eqs. (41), (42), (43) and (44) to yield there initial
distributions with following inlet boundary conditions:

Ci (0) =

[

0 0 0 0 0
0.79u0ol

vg0

0.21u0ol

vg0
0

]

, T (0) = T0,

vg (0) = vg0 andP (0) = P0

4. Iterative loop for time

• Solve the solid equations for new time.

• Solve the gas equations to yield updated distributions of

the solution variables with same values atx = 0 in step 3,
except:

C4 (0) =







0, if 0 ≤ t ≤ t0

δ

vg0
, if t > t0

C6 (0) =















0.79u0ol

vg0
, if 0 ≤ t < tcl

0.79u0 (t+ dt)

vg0
, if t ≥ tcl

C7 (0) =















0.21u0ol

vg0
, if 0 ≤ t < tcl

0.21u0 (t+ dt)

vg0
, if t ≥ tcl

5. Update time:tn+1 = tn + dt

6. Stop if t = tend, else go to step 4

However, the main objective of Table I is to show that how
the control input interacts with the system.

The UCG system is operated in open loop for0 ≤ t < tcl
with the inputu0ol , and fort ≥ tcl the operation is closed loop
with the flow rateu0. Actually the controller is brought in to
the loop after the transients of the ignition phase are settled
down.

The differential equation for the control input:̇u =
−κ sign (s) (Sec VI) is numerically solved using the forward
Euler’s mehtod [31] withu (tcl) = uol.

u (t+ dt) = −κ sign {s (t)}dt+ u (t) (36)

wheredt is the sampling time for the numerical solution.

The air flowrateu0 at x = 0 is given by the following
equation:

u0 (t+ dt) =
1

C
[Du(t)− Eu(t+ dt)− Fu0(t)−Gu0(t− dt)]

(37)

where,

C =
τda

τa + τda
dt+ 2τadt

dt2

D =
2dt2 − 2τadt− τda

dt− 2τda
τa

dt2

E =
τda

τa
dt2

F =
2dt+ τda

dt

G =
τda

dt

The air flowrateu0 determines the concentration of the O2

and N2 at x = 0 required to obtain the desired composition of
the product gases. One part ofu0 directly affects the output as
the inert gas N2 does not participate in any chemical reaction
and the other part influences the output through the UCG
reactor model.

The outputy is calculated by Eq. (48) andym in Fig. 1 is
computed as:

ym (t+ dt) =
1

H
[Iy(t)− Jy(t+ dt)− Kym(t)− Lym(t− dt)]

(38)

whereH = C(τa = τg, τda
= τdg

), I = D(τa = τg, τda
=

τdg
), J = E(τa = τg, τda

= τdg
), K = F(τda

= τdg
) and

L = G(τda
= τdg

)

VIII. S IMULATION RESULTS

This section presents some simulation results for the closed
loop system, in order to demonstrate the performance and
robustness of the SMC technique. For simulationstcl = 1
hr, τa = τg = τda

= τdg
= dt = 10 s and the controller gain

κ = 2× 10−8.
The control effort in Fig. 4 dragsy to yr (Fig. 5). A critical

amount of steam is required for the process of UCG to exist,
otherwise the starvation or flooding of the UCG cavity can
occur. Steam is responsible for the steam gasification reaction
which produces CO and H2. The steam participating in the
gasification reaction is produced by the water influx from the
surrounding aquifers. The amount of intruding water can be
controlled by changing the operating pressure of the UCG
reactor, but still there is an uncertainty in the actual amount
of steam present in the reactor, because its measurement is
not available. However, there is always an upper limit to
the amount of steam available for the reactor, otherwise the
flooding of the cavity occurs and extinguishes the burning
of coal. The profile ofδ used for evaluating the robustness
of the SMC algorithm is shown in the Fig. 6. Despite the
variation in δ the controller successfully keeps the output at
its desired level. The increase inδ increases the production
of syngas and hencey. The controller reacts to the situation
by increasingu which provides more O2 for char oxidation
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reaction and results in higher concentration of CO2, which
decreasesy by reducing the molar fractions of CO and H2.
Moreover, increasingu produces more moles of N2 which
directly decreasesy. Similarly whenδ decreases, the controller
also reduces the moles of air entering the reactor to increase
y.

1 3 5 7 9 11 13 15 17 19

2.2

2.4

2.6

2.8

3

3.2
x 10

−4

Time (hr)

A
ir 

flo
w

ra
te

 (
m

ol
es

/c
m

2 /s
)

 

 

u

Fig. 4. Control effort with time
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Fig. 6. Disturbance with time

The sliding variables is shown in Fig. 7. In reaching phase:
s 6= 0, the controller dragsy to the sliding manifold in the
presence ofδ and modeling uncertainties. While the design
of s keepsy = yr during the sliding motion:s = 0. The
chattering phenomenon can also be seen in the zoomed view
of Fig. 7, which is caused by finite sampling frequency of
discretization:fs = 1/dt = 0.1 hz, ignoring the dynamics of

actuator and sensor, and by using a simplified UCG model
during control design.
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Fig. 7. Sliding variable with time

The solutions of the states of the UCG process are shown
in Figs. 8, 9 and 10. The results are shown for19 hrs and400
cm, because during this time the coal bed is approximately
consumed up to350 cm.
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Fig. 8. Coal density distributions with length at differentsimulation times

Fig. 8 shows that the magnitude of the coal density distri-
bution is decreasing with time, which justifies the solutionfor
the mass balance of coal in Eq. (19). It can also be noticed
that the distribution of coal density is pushed towardsx = L
with time.
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Fig. 9. Char density distributions with length at differentsimulation times

The magnitude of theρ2 distribution is increasing with time
(Fig. 9) due to the coal pyrolysis reaction, but this increase
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Fig. 10. Solid temperature distributions with length at different simulation
times

lessens asρ1 decreases. It can also be observed that the width
of the reaction zoneΩ is also widening with time. The char
density is consumed byR2 andR3 near the reaction front.

Fig. 10 shows that theTs distributions have higher values in
Ω. All the chemical reactions occur within this region, beyond
this region the temperature is not high enough to support any
chemical reaction. A high value of temperature is maintained
within the reaction zone by the exothermic nature of coal
pyrolysis and char oxidation reaction. Therefore, when allof
the coal and char is consumed then there is no more fuel to
be burnt, and the temperature will attain its lowest possible
value determined by the respective boundary conditions.

The boundedness of the zero dynamics proved in Sec-
tion VI-C can also be verified from the results in Figs. 8, 9
and 10.

IX. CONCLUSION

The SMC successfully maintains the desired heating value
of the product gas mixture. The gain of the SMC is found
by knowing the bounds of the auxiliary functions of the
process variables. However, this methodology is applicable if
in addition to tracking, the problem of stability is also solved.
In our case it should be shown that so called zero dynamics are
governed by a set of PDEs. For the mass balance equations,
solutions were found analytically and a Lyapunov functional
was found to demonstrate stability of the heat equation. The
selected value of the controller gain also compensates for
the input disturbance and the modeling approximations made
for analytical control design. The simulation results showthe
success of the SMC algorithm.

The implementation of the designed SMC on the actual
UCG site will further validate its effectiveness.

APPENDIX A
ONE DIMENSIONAL PACKED BED MODEL OF

UNDERGROUND COAL GASIFICATION

The actual model of UCG [25] is comprised of following
equations.

A. Solid equations

These equations are based on the laws of conservation of
mass and energy for coal and char.

∂

∂t
ρi =Mi

6∑

j=1

asijRj (39)

where,

ρi (0, x) = ρi0(x), 0 ≤ x ≤ L

∂Ts
∂t

=

∂

∂x

[

(1− φ)k
∂Ts
∂x

]

+ h(T − Ts)−Hs

Cs

(40)

where,

Ts (0, x) = Ts0(x), 0 ≤ x ≤ L

∂Ts
∂x

(t, 0) =
∂Ts
∂x

(t, L) = 0, t ≥ 0

whereCs is the total solid phase heat capacity (cal/K/cm3)
andHs the solid phase heat source (cal/s/cm3).

B. Gas equations

The gas phase equations are ordinary differential equations
(ODEs) inx.

dCi

dx
=

1

vg



−Ci

dvg
dx

+
3∑

j=1

aijRj



 (41)

dT

dx
= − h

vgCg

(T − Ts) (42)

dP

dx
= −vgµ

2K
(43)

dvg
dx

= −vg
P

dP

dx
+
ug
T

dT

dx
+
RT

P

8∑

i=1

3∑

j=1

aijRj (44)

whereCi is the concentration (mol/cm3) of gasi with i =
1 → 8 represents CO, CO2, H2, H2O (g), CH4, N2, O2 and tar,
K is the gas permeability coefficient (cm2), µ is the viscosity
(Pa s) andR is the universal gas constant (cm3Pa/mol/K).

C. Chemical kinetics

A set of six chemical reactions is considered in [25], but
for the simplified model in Section III-A only three important
reactions are considered, which include coal pyrolysis, char
oxidation and steam gasification [25].
CHaOb andCHāOb̄ are the empirical formulas for the coal

and char respectively witha, b, ā and b̄ are determined by the
coal and char ultimate analysis.

The equations for the rates of the reaction are as follows:
1) Coal pyrolysis:

R1 = 5
ρ1
M1

exp

(−6039

Ts

)

(45)
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TABLE II
CHEMICAL REACTIONS CONSIDERED IN THE MODEL

Sr Chemical equations

1. Pyrolysis

CHaOb → |as2,1 |CHāOb̄+ |a1,1|CO+ |a2,1|CO2+a3,1H2

+|a4,1|H2O + |a5,1|CH4 + |a8,1|C9Hc

2. Char Oxidation

CHāOb̄ + |a7,2|O2 → |a2,2|CO2 + |a4,2|H2O

3. Steam gasification

CHāOb̄ + |a4,3|H2O 
 |a1,3|CO + |a3,3|H2

2) Char oxidation:

R2 =
1

1
Rc2

+ 1
kym7

(46)

Rc2 =
9.55× 108ρ2m7P exp

(
−22142

T̃

)

T̃−0.5

M2

T̃ = βTs + (1− β)T

wherem7 is the mole fraction ofO2 andβ = 1
3) Steam gasification:

R3 =







1
1

Rc3
+ 1

kym4

, if m4 −
(

m1y3

KE3

)

> 0

1
1

Rc3
− 1

kyy1

, if m4 −
(

m1m3

KE3

)

< 0
(47)

Rc3 =
Rc3

+

m4

(

m4 −
m1m3

KE3

)

Rc3
+ =

ρ2m
2
4P

2 exp
(

5.052− 12908
T̃

)

M2

[

m4P + exp
(

−22.216 + 24880
T̃

)]2

wherem1,m3 andm4 are molar fractions of CO, H2 and
H2O respectively, andKE3

is equilibrium constant for steam
gasification reaction.

D. Model simplification

In order to make the control design analytically possible,
following assumptions are considered in the actual model.

• It is assumed that the pressure of the gas mixture
is constant along the length of the reactor. If a well
linked channel is established between the injection and
production wells then the gas pressure does not drop
significantly through the UCG channel [24].

• Only the rate of forward reaction is considered for steam
gasification in Eq. (47). The concentration of steam does
not vary much along the reactor, therefore it is assumed

that it stays equal to its intial value
δ

vg0
. This assumption

further simplifiesR3.
• It is also assumed that the total concentration of the

gases near the reaction front(location along the length
of the reactor where the injected air reacts with the
hot char [25]) is the sum of the concentrations of H2O

(g), N2 and O2. Actually the sum of the concentrations
of these three gases dominate the total concentration at
the reaction front. AsR2 and R3 are only significant
near the reaction front so this approximation reduces the
complexity of Eqs. (46) and (47).

• The parameters like heat transfer coefficienth, mass
transfer coefficientky, gas phase velocityvg, total gas
phase heat capacityCg and the thermal conductivity of
the coal and chark are considered constant to simplify
control design.

APPENDIX B
DERIVATION OF THE HEATING VALUE

After the removal of H2O (g) from the product gases, the
gas mixture is sent to the gas analyzer which initially measures
the molar fraction of the gases and then calculates the heating
value [24], [25].

y = H1m1 (L) +H3m3 (L) +H5m5 (L) +H8m8 (L) (48)

mi = 100× Ci (L)

C̃T (L)

C̃T (L) =

8∑

i=1,i6=4

Ci (L)

wheremi is the molar fraction of gasi, andC̃T is the sum
of the concentration of all the gases except H2O (g).

The Eq. (41) is solved to yieldCi (L) by assumingvg to
be constant. The solution for CO, CO2, H2, CH4 and tar at
x = L with Ci (0) = 0 is:

Ci (L) =
1

vg

3∑

j=1

ai,j

∫ L

0

Rjdx (49)

The solution forC7 (L), with C7 (0) = 0.21
u

vg
is:

dC7

dx
= −|a7,2|

vg
R2

C7 (L) = 0.21
u

vg
exp

(

− |a7,2|
u+ δ

∫ L

0

CR2

)

(50)

N2 is an inert gas and it does not participate in any chemical
reaction, thereforeC6 (L) = C6 (0) = 0.79

u

vg
.

Almost all of the O2 is consumed by the char oxidation
reaction at the reaction front [25], so it is assumed that
C7 (L) = 0. The expression forC7 (L) also supports this
argument. Therefore, by substituting the concentration ofthe
gases in Eq. (48) the Eq. (9) can be obtained.
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