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Abstract

In this paper, a model-based control and state reconstruction of an underground

coal gasification (UCG) process is elaborated. In order to deploy model-based

control and estimation strategies, a sophisticated model of the UCG process

based on partial differential equations is approximated with a nonlinear control-

oriented model that adequately preserves the fundamental dynamic characteris-

tics of the process. A robust dynamic integral sliding mode control (DISMC) is

designed for the approximated model to track the desired heating value, which

is one of the key indicators for evaluating the performance of an UCG process.

In most of the industrial applications, a desired heating value has to be attained.

The unknown states required for the model-based control are reconstructed us-

ing a gain-scheduled modified Utkin observer (GSMUO). In order to assess the

robustness of the nonlinear control and estimation techniques, the water influx

phenomenon is considered as an input disturbance. Moreover, the underlying

UCG plant model is subjected to parametric variations as well as measurement

noise. In order to guarantee the stability of the overall system, the boundedness

of the internal dynamics is also proved. To make a fair comparison, the per-
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formance of the proposed controller is compared with an integral sliding mode

control (ISMC) and a classical PI controller. Simulation results highlight the

effectiveness of the proposed control scheme in terms of minimum control energy

and improved tracking error.

Keywords: Underground coal gasification control, energy conversion systems,

dynamic integral sliding mode control, gain scheduled modified Utkin observer.

1. INTRODUCTION

The detrimental impact of coal combustion on both air and water quality

has been addressed by the advent of clean coal technologies, which allow the

removal of harmful gases before, during and after the burning of coal [1, 2, 3].

Coal has become the leading fuel for electricity production after the introduction

of integrated gasification combined cycle (IGCC) technology. In IGCC, coal

gasification is integrated with a combined cycle turbine. Gasification is the

partial oxidation of coal, which produces synthetic gas or syngas (a mixture of

CO, H2, CH4 and higher hydrocarbons) that preserves its combustion heat to a

maximum extent. The high operating pressure of the gasification process makes

the separation of harmful contaminants from useful combustible gases easier,

where the latter ones act as fuel for the highly efficient combined cycle turbines

to generate electric power [4, 5]. Gasification can either be performed in specially

designed chambers – denoted as surface gasification – or the coal seams can be

gasified deep under ground – known as underground coal gasification (UCG).

In UCG, the ignition of the coal seam is followed by the injection of oxidants

through the inlet well, drilled from the surface to the coal seam. The oxidants

chemically react with coal to produce syngas, which is withdrawn from the

outlet well.

Industrial applications like IGCC require a desired heating value of the syn-

gas [7]. Therefore, one of the key parameters for determining the efficiency of

a UCG process is the heating value of syngas. It has been already established

in [8] that both composition and flow rate of the injected oxidants can be varied
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independently to control the heating value of syngas.

In the literature, both model-free and model-based control techniques have

been exploited for the UCG process. In [9] and [10], a conventional PI con-

troller is designed for a lab scale UCG setup to control the concentrations and

the temperatures of product gases as well as the heating value. Recently in [11],

an optimum controller is designed for maximizing the concentration of CO for

the similar UCG setup. The model-based control of UCG for maintaining a

desired constant heating value of syngas has been investigated in [12, 13, 14].

In [12], an equivalent control based sliding mode control (SMC) [15] is designed

for an approximate model using ordinary differential equations that is based

on the assumptions proposed in [16, 17]. Therein, all the state variables are

considered to be measurable, which is usually not the case. The super-twisting

sliding mode control as well as a conventional sliding mode control design pro-

posed in [13] and [14], respectively, are also based on the approximate models

derived from [8]. Moreover, state measurements are not required for the control

implementation in both cases. The bounds on the control gains are determined

with the approximate models. However, this could lead to a conservative control

action, because the upper bounds of the approximate model are employed. The

control techniques are then assessed using the sophisticated UCG model [8].

In [18], the mathematical model of [12] is employed to design an integral slid-

ing model control (ISMC) for tracking the heating value of syngas. For the

proposed model-based control design, a gain-scheduled modified Utkin observer

(GSMUO) [19, 20] is employed to reconstruct the unknown states. Moreover, it

has been analytically demonstrated that the zero dynamics of the process under

control is stable.

One of the drawbacks of SMC is the chattering phenomenon due to the

inclusion of a discontinuous sgn function directly in the control input. In order

to account for this limitation, a dynamic integral sliding mode control (DISMC)

is proposed in this paper. The DISMC includes the discontinuous sgn function

in the time-derivative of the control input, which is needed to be filtered before

employing to the plant. Consequently, a continuous control input is obtained
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and the chattering phenomenon is reduced significantly, cf. [21]. The controller

aims at tracking of desired heating value for the control-oriented model of UCG

plant [12] subject to the impact of parametric uncertainties, measurement noise

and external disturbances. Furthermore, unknown states of the system are

estimated using a GSMUO. Water influx from surrounding aquifers intrudes in

the UCG reactor, and converts into steam due to the very high temperature.

Hence, the flow-rate of the steam is considered as an input disturbance.

This paper is arranged as follows: In Section 2, the nonlinear control-oriented

model of the UCG plant is presented. The DISMC and the GSMUO for the

UCG plant are designed in Sections 3 and 4, respectively. The simulation results

of the proposed scheme are discussed in Section 5 and the paper is concluded

in Section 6.

2. Mathematical Model of UCG Process

In this work, the nonlinear control-oriented model of the UCG process,

see [12], is employed for the model-based control design. The model covers

eight gases (CO, CO2, H2, CH4, H2O, O2, N2, Tar) and two solids (coal and

char). The following ordinary differential equations describe the energy and
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mass balances of solids and gases:

ρ̇
coal

= −M1R1 ,

ρ̇
char

= M2(pR1char
R1 −R2 −R3),

Ṫs =
1

Cs

(
ht(T − Ts)−∆q2R2 −∆q3R3

)
,

Ċ
CO

= p
R1CO

R1 +R3 − βC
CO

,

Ċ
CO2

= p
R1CO2

R1 +R2 − βC
CO2

,

Ċ
H2

= p
R1H2

R1 +R3 − βC
H2

,

ĊCH4
= p

R1CH4
R1 − βCCH4

,

Ċ
Tar

= p
R1Tar

R1 − βC
Tar

,

ĊH2O = p
R1H2O

R1 + p
R2H2O

R2 − p
R3H2O

R3 − βCH2O +
Π

L
u+

1

L
δ ,

Ċ
O2

= −p
R2O2

R2 − βC
O2

+
Ξ

L
u ,

ĊN2
= −βCN2

+
Ψ

L
u . (1)

Although a large number of chemical reactions take place in a UCG reactor,

the chemical kinetics of the current model are governed by only three dominant

reactions [8], which are stated in Table. 1. The compounds – CH0.912O0.194,

Table 1: Dominant chemical reactions in UCG.

Sr. Chemical equations

1. Coal pyrolysis

CH0.912O0.194
R1−→ p

R1char
CH0.15O0.02 + p

R1CO
CO +

p
R1H2O

H2O + p
R1H2

H2 + p
R1CH4

CH4 + p
R1CO2

CO2 +

p
R1Tar

(CH2.782)9

2. Char oxidation

CH0.15O0.02 + p
R2O2

O2
R2−→ CO2 + p

R2H2O
H2O

3. Steam gasification

CH0.15O0.02 + p
R3H2O

H2O
R3−→ CO +H2

CH0.15O0.02 and (CH2.782)9 – represent molecular formulas of coal, char and
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tar, respectively. The corresponding rates of the chemical reactions – R1, R2

and R3 – are expressed as

R1 = 5
ρ

coal

M1
exp

(
−6039

Ts

)
, Rm2

=
1

10
htmO2

,

Rc2 =
1

M2

(
9.55× 108ρ

char
mO2

P exp

(
−22142

Ts

)
T−0.5
s

)
,

R2 =
1

1

Rc2

+
1

Rm2

, Rm3 =
1

10
htmH2O ,

Rc3 =

ρcharm
2
H2O

P 2 exp

(
5.052− 12908

Ts

)
M2

(
mH2OP + exp

(
−22.216 +

24880

Ts

))2 ,

R3 =
1

1

Rc3

+
1

Rm3

, (2)

where m
O2

and m
H2O

are the internal molar fractions of O2 and H2O. Mathe-

matically, the molar fractions are given by

mO2
=

C
O2

CT + CH2O

, mH2O =
C

H2O

CT + CH2O

,

C
T
= CCO + CCO2

+ CH2
+ CCH4

+ CTar + CO2
+ CN2

.

Table 2 lists all the variables along with their meaning that appear in the

mathematical model of the UCG process.

The stoichiometric coefficients and the nominal parameter values are listed

in Table 3 and Table 4, respectively.

The nonlinear control-oriented model given in (1) can be rewritten in a

control-affine form, i.e.,

ẋ = f(x) + g1u+ g2δ , (3)

where x ∈ R11 is the state vector, f , g1, g2 ∈ R11 are smooth vector fields, u is

the control input and δ is the external disturbance, which satisfies the following

assumption:

Assumption 1. Let δ be a matched disturbance and sufficiently smooth, i.e., δ̇
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Table 2: List of parameters and states.

Symbol Description

ρi Density of solid i (g/cm3)

Ci Concentration of gas i (mol/cm3)

Mi Molecular weight (g/mol), i = 1, 2 for coal and char, respectively

Ts, T Solid and gas temperatures (K)

ht Heat transfer coefficient (cal/s/K/cm3)

Cs Specific heat capacity of solids (cal/g/K)

Ri Rate of a chemical reaction (mol/cm3/s), i = 1, 2, 3 represents

pyrolysis, char oxidation and steam gasification, respectively

∆qi Heat of reaction i (cal/mol), i = 1, 2 represents char oxidation

and steam gasification, respectively

L Length of the reactor (cm)

βCi Approximation of spatial derivative (mol/cm3/s)

u Flow rate of injected gases (moles/cm2/s)

δ Input disturbance: flow rate of steam (moles/cm2/s)

Π, Ξ,Ψ Percentages of H2O, O2 and N2 in u

P Gas pressure (atm)

p
Rij

i ∈ {1, 2, 3}, j ∈ {char, CO, CO2, H2, CH4, H2O, O2, Tar}

Table 3: Stoichiometric coefficients.

p
R1char

p
R1CO

p
R1CO2

p
R1H2

p
R1CH4

p
R1Tar

p
R1H2O

p
R2H2O

p
R3H2O

p
R2O2

0.766 0.008 0.058 0.083 0.044 0.0138 0.055 0.075 0.925 1.02

is also continuous and bounded

||δ̇(t)|| ≤ $(t) ≤ $0 ,

where $ is a smooth function and $0 ∈ R+.
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Table 4: Nominal parameter values.

Cs β P ht L ∆q1 ∆q2

7.3920 7× 10−6 4.83 0.001 100 -93929 31309.7

The state vector for the control-oriented model is given by

x = [ρ
coal

ρ
char

Ts C
CO

C
CO2

C
H2

C
CH4

C
Tar

CH2O C
O2

C
N2
]T .

(4)

The product gases recovered from the production well are sent to the gas

analyzer through a network of pipes. After removal of steam from the gas

mixture, the gas analyzer measures the percent volume content of each dry

gas [8, 13]. Therefore, the concentration of the gases can be determined from

the known volume content of each gas. Accordingly, the measurement vector

ym is given by

ym =
[
C

CO
C

CO2
C

H2
C

CH4
C

Tar
C

O2
C

N2

]T
. (5)

For the given control problem, the heating value Hv of syngas is considered

as the controlled variable, which is expressed as

Hv = H
CO

χ
CO

+H
H2
χ

H2
+H

CH4
χ

CH4
, (6)

where Hi, i ∈ {CO,H2, CH4} is the combustion heat (KJ/mol) of gas i and χi

represents the molar fraction of the gases, characterized by the ratio

χi =
Ci

C
T

.

The control design aims at maintaining the heating value at predefined set-

points depending on the operating conditions, i.e., consumption of coal and char

within the UCG bed. Therefore, the subsequent section discusses the design of

a dynamic integral sliding model control (DISMC) for the UCG process.

3. Dynamic Integral Sliding Mode Control Design

In this section, a DISMC is designed that tracks the desired trajectory of

the heating value Hv of the syngas. DISMC combines the benefits of ISMC and
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dynamic SMC and, moreover, yields additional advantages like the elimination

of reaching phase with increased robustness and a continuous control input,

see [22, 23].

DISMC offers two dynamic terms in its control law, i.e.,

u̇ = u̇c + u̇d . (7)

The continuous part u̇c forces the convergence of the states of the nominal

system to the desired equilibria – directly after the establishment of SM at

t0 (i.e., when the controller starts its operation). The discontinuous part u̇d

enforces a sliding mode despite modeling uncertainties and external disturbances

– also from the very beginning of the controller operation, see [22, 23].

In this paper, u̇c is designed by using the pole placement technique, which

guarantees asymptotic convergence of the tracking error

u̇c = ë = −ηė− ζe , and e = Hv −Hvd , (8)

where η, ζ ∈ R+ are positive controller gains, and Hvd is the desired heating

value. The closed-loop poles are the roots of the polynomial ρ2 + ηρ+ ζ, where

ρ is a complex variable.

In order to attain a desired robustness and performance, the following inte-

gral sliding surface is designed

s(e) = σ(e) + z , and σ(e) = ė+ λe , (9)

where λ ∈ R+ is a design variable and z is an integral term chosen as follows

ż = −λė− u̇c with z(0) = −σ(e(0)) . (10)

The specific choice of the sliding surface and the initial condition of the inte-

gral term enforces a sliding mode from the very beginning that eliminates the

reaching phase. Therefore, the robustness of the closed-loop system increases

right from the beginning.
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3.1. Stability of the Nominal System

To prove the stability of the nominal system – in the absence of any uncer-

tainties and the disturbance δ –, the time derivative of (9) is considered along

with (7), (8) and (10). This leads to

ṡ = ë− u̇,

= Ω(x, u, t)−Υu̇d − (1 + Υ) u̇c . (11)

Herein, Υ = Φ+Ψ
L ∈ R+ and Ω(x, u, t) are smooth functions of the system states

x and the control input u, which are derived from the UCG model (1).

To ensure finite-time enforcement of SM, the reaching condition with a dis-

continuous controller gain κ ∈ R+ is selected as follows

ṡ = −κ sgn(s) . (12)

Now the discontinuous part of the control input u̇d is obtained from (11)

and (12)

u̇d = − 1

Υ

(
−Ω(x, u, t) + (Υ + 1) u̇c − κ sgn(s)

)
. (13)

Consequently, the control input is obtained by integrating (7). As the discon-

tinuous sgn(s) appears in the time-derivative of the control input, the control

input is continuous, and chattering is reduced significantly [24].

To prove the existence of sliding mode in finite-time, the following Lyapunov

function along with its time-derivative are introduced

V (x, t) =
1

2
s2 , (14)

V̇ (x, t) = sṡ . (15)

The sliding surface s converges to zero if the following condition is fulfilled

sṡ < 0 . (16)
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By substituting (13) in (11) and using s sgn(s) = |s|, it can be easily shown that

the nominal system satisfies (16). The reaching condition is given by

sṡ = −κ|s| < 0 . (17)

The result in (17) confirms finite-time convergence, i.e., the sliding surface

s = 0 is attained in finite time.

3.2. Stability of the Perturbed System

Nevertheless, the original system has a matched input disturbance (water

influx δ, cf. (3)) and parametric uncertainties. Therefore, the perturbed ṡ is

˙̃s = Ω(x, u, t)−Υu̇d − (Υ + 1) u̇c + g2δ̇(t) + f̃(x, t) , (18)

where δ̇ and ||f̃ || ≤ f̃0 represent the time-derivative of the external disturbance

and modeling uncertainties, respectively.

Substituting (13) in (18) and multiplying with s yields

s ˙̃s = s
(
−κ sgn(s) + g2δ̇(t) + f̃(x, t)

)
,

= −κ|s|+ sg2δ̇(t) + sf̃(x, t),

≤ −κ|s|+ |s|$0||g2||+ |s|f̃0,

≤ −|s|
(
κ−$0||g2|| − f̃0

)
. (19)

If κ ≥ ξ +$0||g2||+ f̃0 holds, with ξ ∈ R+, then the time derivative becomes

V̇ ≤ −
√
2V ξ . (20)

The inequality in (20) shows that the system trajectories reach the sliding man-

ifold in finite-time ts [19], given by

ts ≤
√

2V (s(0))

ξ
. (21)

The dynamics of the system under sliding motion is governed by

s = 0 ∧ ṡ = ë+ ηė+ ζe = 0 . (22)

Since η and ζ are positive constants, the tracking error asymptotically converges

to zero according to the Hurwitz’s stability criterion.
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3.3. Stability of the Zero Dynamics

After the establishment of a sliding mode at t = t0, it is mandatory to check

the stability and boundedness of the zero dynamics. When the tracking error

converges to zero, i.e., Hv = Hvd holds, the following equation can be derived

HCOCCO +HH2
CH2

+HCH4
CCH4

= CTHvd . (23)

This equation gives a unique solution for only one Ci. Therefore, the bounded-

ness of the zero dynamics has to be determined. Using (23), the boundedness

of CCO follows from

CCO =

(
C̃THvd −HH2CH2 −HCH4CCH4

)
HCO −Hvd

, (24)

where C̃T is the sum of concentrations of all the gases except CO.

During sliding mode, u̇ = u̇d holds, because u̇c in (8) becomes zero. More-

over, by substituting sgn(σ) = 0 and Ω(x, u, t) = −Kud+Γ(x, ud, t) in (13), u̇d

reduces to

u̇d =
1

Υ

(
−Kud + Γ

)
, (25)

where K is a strictly positive constant.

The zero dynamics of the UCG process involves all state equations of (1) –

except the dynamics of ĊCO. As a result, the zero dynamics can be written in

the following form

ẋ(t) = Λx(t) + ω(x, ud, t) , (26)

Λ = diag

(
−ε;−%;− ht

Cs
;−β;−β;−β;−β;−β;−β;−β

)
,

where x ∈ R10, ω(x, ud, t) ∈ R10 is the nonlinear function of x and ud, Λ ∈

R10×10 is a constant matrix and ε, % ∈ R+ are given by

ε = exp

(
−6039

Tsmax

)
and % = M2

(
R̃2 + R̃3

) ∣∣∣∣∣
Tsmax

, (27)

with Tsmax
= max

t>t0
Ts and Ri = ρ

char
R̃i.
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Prior to the evaluation of the boundedness of the zero dynamics, it is worth

mentioning that mass and energy balances of solids and gases in (1) are coupled

with each other by the reaction rates (2). These are highly nonlinear functions of

the system states, especially Ts, because all the reaction rates require a certain

temperature level to occur [8]. Now, if 0 < Tsmax ≤ ∞ holds, ε → 0 according

to (27), then ρ
char

in (1) and R1 in (2) asymptotically converge to zero. As

in UCG coal is decomposed into char and product gases by R1, according to

the law of conservation of energy max
t

ρ
char

< ρ
coal

(0) holds, which implies that

ρ
char

is also bounded. With bounded ρ
coal

and ρ
char

as well as 0 < Tsmax ≤ ∞,

all the reaction rates are also bounded, cf. (2). By using the energy balance

in (1) and the fact that the reaction rates are bounded, Ts ≤ Tsmax
< ∞ holds

according to the input Tg ≤ Tgmax
. Moreover, due to the physical properties of

the system, both x(t) and u are positive.

In the light of above results, 0 < Γ ≤ ν(t) and 0 < ω ≤ µ(t) in (25) and (26),

respectively, are also bounded, because they are functions of the reaction rates.

Therefore, the maximum value of the control input ūd(t) can be obtained by

solving the linear differential equation in (25) by substituting Γ = ν(t)

ūd(t) = ud(t0) exp
(
− K

Υ
t
)
+

∫ t

t0

exp
(
− K

Υ
(t− τ)

)
ν(τ)dτ . (28)

As ν(t) is bounded, therefore, ūd(t) is also bounded ∀t ≥ t0. By substituting

ω = µ(t), see [25], the solution of (26) yields the maximum value of the state

vector x̄(t)

x̄(t) = x(t0) exp
(
Λ (t− t0)

)
+

∫ t

t0

exp
(
Λ (t− τ)

)
µ(τ)dτ . (29)

The matrix Λ is Hurwitz and µ(t) is bounded, hence, the zero dynamics of the

system is also bounded ∀t ≥ t0. Consequently, using the results of (28) and (29)

in (24), it can be shown that CCO is bounded as well.

The function Ω(x, u, t) in (13) depends on the state vector x(t), which is not

completely measurable. Therefore, a gain-scheduled modified Utkin observer

(GSMUO) is designed to reconstruct the unknown states of the system.
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4. Gain-Scheduled Modified Utkin Observer

The GSMUO is based on a quasi-linear model of the UCG, which is ob-

tained by the linearization of (1). In case of a non-zero equilibrium and arbi-

trary operating points, the linearization approach based on a first-order Taylor

series expansion fails to provide an appropriate linear dynamics of a nonlin-

ear model [26]. To overcome this issue, a constrained minimization problem is

formulated with the goal to construct a linear model in x, u and δ that approx-

imates the behavior of (3) in the vicinity of the operating point xop. For any u

and δ, the exact decomposition of the control-affine system (3) yields

ẋ = f(x) + g1u+ g2δ = A(x)x+ g1u+ g2δ . (30)

Likewise, the control-affine system at the operating point xop can be given as

follows

ẋop = f(xop) + g1u+ g2δ = A(xop)xop + g1u+ g2δ . (31)

The problem is to find a state-dependent matrix A(x) such that in a neighbor-

hood of xop

f(x) = A(x)x , and f(xop) = A(xop)xop . (32)

Let aT
i denote the ith row of the matrix A. Then, (32) can be re-written as

fi(x) = aT
i (x)x , i = 1, 2, . . . , n , (33)

and

fi(xop) = aT
i (xop)xop . (34)

Expanding the left-hand side of (33) around xop, and neglecting the higher-order

terms leads to

fi(x) = fi(xop) +∇T fi(xop)(x− xop) = aT
i (x)x , (35)

14



where ∇T fi(x) ∈ Rn×1 is the gradient of fi evaluated at x. Using (34), the

above equation can be rewritten as

∇T fi(xop)(x− xop) = aT
i (xop)(x− xop) . (36)

In order to find ai, a constrained minimization problem is formulated as

minimize
ai

J =
1

2
||∇fi(xop)− ai(xop)||22

subject to fi(xop) = aT
i (xop)xop .

The first-order optimality condition for the augmented cost function J̄

J̄ =
1

2
||∇fi(xop)− ai(xop)||22 + λ(fi(xop)− aT

i (xop)xop) , (37)

with λ as a Lagrange multiplier, results in ∇ai
J̄ = 0, i.e.,

ai = ∇fi(xop)− λxop . (38)

The Lagrange multiplier λ is determined by pre-multiplying (38) with xT
op and

substituting in (34). Provided that xop 6= 0 holds, this results in

λ =
xT
op∇fi(xop)− fi(xop)

||xop||2
. (39)

Substituting (39) into (38) leads to

ai = ∇fi(xop) +
fi(xop)− xT

op∇fi(xop)

||xop||2
xop , xop 6= 0 . (40)

It is worth mentioning that if the operating point is an equilibrium point, i.e.,

xop = 0, the above formulation reduces to the first-order linear approximation

of a nonlinear system, where the system matrix becomes the Jacobian of the

nonlinear vector on the right-hand side.

Using the formulation above, the nonlinear control-oriented model of the

UCG can be stated as a quasi-linear model, i.e.,

ẋ = A(x)x+ bu ,

y = Cx , (41)
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where x ∈ R11, A(x) ∈ R11×11, b ∈ R11 and C ∈ R7×11. The matrices b and

C can be directly written from (1) and (5).

In a conventional sliding mode observer, it is difficult to choose discontin-

uous gains to enforce a sliding mode in finite-time. The issue is resolved by

incorporating a Luenberger-type gain matrix within the sliding mode observer,

which provides a feedback of the output errors to achieve a robust state recon-

struction [27]. To design the GSMUO, the system needs to be transformed into

a special state space representation with state vector x̃ = [z ym]T = Tx. The

transformation matrix is chosen as

T =
[
NT C

]T
, (42)

where Nc ∈ R4×7 spans the null space of C.

The transformed linear system is given by ż

ẏm

 = TA(x)T−1

 z

ym

+ Tbu . (43)

According to new coordinates transformation, the unknown states are

z =
[
ρ

coal
ρ

char
Ts C

H2O

]T
. (44)

The corresponding output matrix is

CT−1 =
[
04×7 I7×7

]
. (45)

Now, the new system can be partitioned as follows

T A(x) T−1 =

A11(x) A12(x)

A21(x) A22(x)

 , and T b =

[
b1
b2

]
.

Rewriting the system dynamics leads to

ż = A11(x)z +A12(x)ym + b1u ,

ẏm = A21(x)z +A22(x)ym + b2u . (46)

The overall structure of the corresponding GSMUO is given by

˙̂z = A11(x)ẑ +A12(x)ŷm + b1u+Lυ −G1ey ,

˙̂ym = A21(x)ẑ +A22(x)ŷm + b2u− υ −G2ey .
(47)
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Here, ẑ and ŷm are the estimates of unknown and known states, respectively.

The gain matrices G1 ∈ R4×7 and G2 ∈ R7×7 represent the Luenberger-type

gain matrices, which provide robustness against certain class of uncertainties.

Furthermore, L ∈ R4×7 is a feedback gain matrix. The vector υ ∈ R7 is defined

by

υ =



M1 sgn(ŷm,1 − ym,1)

M2 sgn(ŷm,2 − ym,2)

...

...

M7 sgn(ŷm,7 − ym,7)


, (48)

with Mi ∈ R+. By using (46) and (47), the dynamics of the estimation error

can be expressed as

˙̂ez = A11(x)êz +A12(x)êy +Lυ −G1ey , (49)

˙̂ey = A21(x)êz +A22(x)êy − υ −G2ey , (50)

where ez = ẑ − z and ey = ŷm − ym. Introducing a new error variable ēz =

ez +L ey, the transformed error dynamics with states ēz and ey is given by[
˙̄ez
ėy

]
=

[
Ā11 Ā12

A21(x) Ā22

] [
ēz
ey

]
+

[
0
−I

]
υ , (51)

with the submatrices

Ā11 = A11(x) +LA21(x) ,

Ā12 = A12(x)− Ā11L−G1 +L (A22(x)−G2) ,

Ā22 = A22(x)−G2 −A21(x)L . (52)

According to (51), the state estimation problem has been transformed into a

regulation problem in ey and ēz, with υ as an auxiliary observer input. The

selection of each discontinuous gain Mi in (48) satisfies the reaching condition

eyi
ėyi

< 0, where eyi
is the sliding variable. This can be proved by considering
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the following Lyapunov function

Vi =
1

2
e2yi

. (53)

The time-derivative of (53) along (51), yields

V̇i = eyi

(
A21i(x)ēz + Ā22ieyi − υi

)
,

≤ −|eyi
|
(
Mi − |A21(i)(x)ēz + Ā22(i)eyi

|
)
, (54)

where A21(i)(x) and Ā22(i) represent the ith row of matrices A21(x) and Ā22

respectively. Now if Mi ≥ ς + |A21(i)(x)ēz + Ā22(i)eyi |, then

V̇i = −
√
2Viς ,

and the measurement error converges to zero in finite-time [19], i.e., eyi
→ 0

given by

ts ≤
√

2Vi(0)

ς
.

Moreover, if L is designed in such a way that the matrix Ā∗
11 according to

A11(x) +LA21(x) = Ā∗
11 (55)

is Hurwitz, then the error ez converges asymptotically as well. Similarly, G2

can be chosen to render the design matrix Ā∗
22 Hurwitz, with

A22(x)−G2 −A21(x)L = Ā∗
22 . (56)

The gain matrices L and G2 are computed using the LQR method, which

minimizes a quadratic cost functional and leads to eigenvalues of Ā∗
11 and Ā∗

22

in C− in the left half complex plane. Finally, G1 in (52) can be designed in such

a way that the equality Ā12(x) = 0 holds. An appropriate choice of L, G2 and

G1 will result in the asymptotic convergence of the error dynamics, i.e., ez → 0

as t → ∞. Hence a proper state observation is confirmed.
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5. Results and Discussions

In this section, simulation results of UCG process along with the DISMC and

GSMUO are presented. Moreover, a comparison is also carried out between the

designed DISMC, ISMC [18] and a classical PI controller for trajectory tracking

regarding the desired heating value. In order to mimic the real time scenario, a

rigorous simulation analysis is performed by considering the following practical

issues:

• The composition of the inlet gas mixture is O2 = 15.4%, H2O = 77% and

N2 = 7.6%, based on the composition Π = 0.77, Ξ = 0.154 and Ψ = 7.6

in (1).

• An additive white Guassian noise with zero mean and variance of 4× 10−4

is added in each measured Ci of the UCG plant. This variance corresponds

to the typical measurement accuracy of the gas analyzer used in the UCG

process [8, 13].

• In order to study the robustness property of the control and estimation

strategies, parametric uncertainties of 2% are introduced in the nominal

system parameters, namely P, β, ht and Cs in the UCG plant, cf. Table. 5.

It is worth mentioning that both the DISMC and the GSMUO use the

nominal system parameters.

Table 5: Parameters subjected to perturbations.

Symbol Nominal Value Actual Value

Cs 7.3920 7.244

β 7× 10−6 6.86× 10−6

P 4.83 4.93

ht 0.001 0.00102

• The desired trajectory for the heating value is shown in Fig. 1. Ideally

a controller should keep Hv at its maximum value. However, in parallel
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Figure 1: Desired heating value trajectory of syngas during open and closed-loop operations.

to the consumption of coal and char within the UCG bed, the peak value

of Hv is decreasing. By ensuring positive flow rates – in order to get a

maximum available Hv – a corresponding trajectory is designed for the

desired Hv.

• It is important to mention that the UCG process is operated in open-loop

for 20000 s to guarantee that the heating value reaches a desired set-point.

For this purpose, the flow rate of the injected gases is kept at 2 × 10−4

moles/cm2/s till 20000 s. Afterwards, the UCG plant is operated in a

closed control loop.

• The GSMUO is active during both the open-loop and closed-loop opera-

tions of UCG plant.

• Apart from parametric uncertainties, a matched input disturbance δ is also

considered to evaluate the robustness of the closed-loop system. The flow

rate δ of the steam generated by water influx from surrounding aquifers

represents the input disturbance. The time profile for δ is shown in Fig. 2.

It is worth pointing out that the steam influx is introduced as soon as the

system is under closed-loop control.

In order to study the estimation behavior of the observer, it is necessary to

initialize both the UCG plant and GSMUO with different initial conditions. The

initial states vectors for the nonlinear control-oriented model of the UCG process
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Figure 2: Flow rate of water influx from surrounding aquifers.

and the GSMUO are chosen x(0) = [0.5 0 497 0 0 0 0 0 0 4.2e−4 1.6e−3]T ,

and x̂(0) = [0.48 0 480 0 0 0 0 0 0 4.2e−4 1.6e−3]T , respectively. Due to the

chemical nature of the process, the initial concentration of the gases are known

beforehand, hence, initialized with the identical numerical values.

As mentioned in Section 4, the observer gain matrices L and G2 in (55)

and (56) are designed using a LQR formulation. This, on the one hand, allows

for specifying relative weights to the unknown states and measurements. On the

other hand, an optimal gain can be obtained for the given operating conditions

of the quasi-linear model of the UCG plant. For gain matrix L, the weighting

matrices Q and R representing the weights for ez and ey in the LQR cost

function are chosen as

Q = diag(Θ2
1; Θ

2
2; Θ

2
3; Θ

2
4) , and

R = diag(Φ2
1; Φ

2
2; Φ

2
3; Φ

2
4; Φ

2
5; Φ

2
6; Φ

2
7) . (57)

where Θi, i ∈ {1, . . . , 4} and Φj , j ∈ {1, . . . , 7} are given by

Θi = ζ

(
θi

z2
i max

)
, and Φj =

(
φj

e2y,jmax

)
.

The values of the constants θi and φj are chosen in such a way that the state

reconstruction and the measurement error convergence are sufficiently fast. The

value ζ characterizes the relative weight between Q and R. In case of G2, both

Q ∈ R7×7 and R ∈ R7×7 are chosen to facilitate rapid convergence of ey.
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Furthermore, the discontinuous gain Mi in (48) needs to satisfy the inequal-

ity

Mi > ||(A21(x))iēz + (Ā22(x))i + ey||∞ , (58)

where i represents the ith row of a matrix. The following discontinuous gains

are selected for the observer in (47)

M = 10−7
[
10 18 10 8 22 22 3

]T
.

The closed-loop operation starts at 20000 s (5.5 hrs), when Hv reaches its

maximum value. Fig. 3 shows the trajectory tracking of Hv for the DISMC,

ISMC and PI controllers. To compare the performance of different controllers,

the integral gain is kept the same for the DISMC, ISMC and PI controllers.

Moreover, the discontinuous gains for DISMC and ISMC, and proportional gain

for PI are also identical.
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Figure 3: Heating value of the syngas during open-loop and closed-loop operation.

The corresponding tracking error is shown in Fig. 4. The tracking error is

shown from that time onwards when the controller is brought into operation.

The control effort for the controllers is depicted in Fig. 5. It can be clearly

seen that DISMC consumes minimum control effort to achieve the desired con-

trol objective in the presence of parametric uncertainty and input disturbance.

Moreover – unlike PI and ISMC – the injected flow rate does not saturate for

DISMC. In order to quantitatively evaluate the performance of the controllers,
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Figure 4: Tracking error for different controllers during closed-loop operation.
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Figure 5: Control input for different controllers.

the root-mean-square error (RMSE) given by

RMSE =

√√√√ 1

N

N∑
i=1

e(i)2 , e(i) = Hv(i)−Hvr (i) , (59)

is computed, where N is the number of samples. Furthermore, the RMSE value

is calculated from the point in time, when the plant is switched to closed-loop

operation. Another performance criterion relates to the control effort for each

controller. The average power of the control signal for different controllers is

computed according to

Pavg =
1

N

N∑
i=1

u(i)2 . (60)

The RMSE and the control effort for the controllers are given in Table. 6.

Here, it can be seen that the PI controller leads to a poor performance in
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Table 6: RMSE and Pavg for different controllers.

Controller RMSE Pavg

PI 2.1524 6.6607× 10−7

ISMC 0.1599 1.1650× 10−7

DISMC 0.2880 5.0698× 10−8

terms of both tracking error and average power consumption – as compared to

the model-based control schemes. Although the RMSE value for the ISMC is

smaller than the one for the DISMC, this comes at the cost of a high control

action. Fig. 6 shows the time profile of the sliding variable for DISMC given

by (9). One of the major advantages of ISMC is the elimination of the reaching
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Figure 6: Sliding manifold for DISMC.

phase, which increases the robustness of SMC. It can be seen in Fig. 6 that the

sliding mode (s = 0) has been established at the very beginning of the controller

operation – thereby eliminating the reaching phase. It is evident from the results

in Figs. 5 and 6 that DISMC provides a smooth control input and the reaching

phase is also eliminated by selecting appropriate initial condition for the integral

part of sliding variable, cf. (10). Therefore, DISMC is a hybrid technique, which

inherits the advantages of both ISMC and dynamic SMC.

An optimum amount of steam H2O (g) is required for a successful UCG

operation. Too much steam H2O (g), however, may decrease the temperature of

the reactor, and in the extreme case the UCG process can even be extinguished.

24



It is worth mentioning that a suitable reactor temperature is required for various

chemical reactions to occur. On the other hand, a reduced amount of steam H2O

(g) can result in the decrease of gasification reactions, hence the production of

syngas can be affected. It can be seen from Fig. 2 and Fig. 5, when water influx

δ starts increasing, that the controller injects more oxidants in the cavity to

increase the concentration of O2. Consequently, the temperature of the cavity

favors the desired production of syngas. When δ starts decreasing, the moles of

the inlet gases are reduced as well to limit the char oxidation reaction, which

favors the production of CO2, which in turn causes a decrease in the amount of

syngas. In short, the controller efficiently accounts for the water influx problem.

The subsequent simulation results demonstrate the performance of GSMUO.

The concentrations of measured and estimated gases are shown in Fig. 7 and

Fig. 8.
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Figure 7: Actual and estimated concentrations of gases.

Herein, the GSMUO also filters out the measurement noise introduced in

the UCG plant. It is important to mention that O2, H2O (g) and N2 are the

injected gases. O2 is responsible for char oxidation reaction, which facilitates

the pyrolysis and gasification reactions by setting a desired temperature of the

reactor. However, H2O (g) is a fundamental reactant in gasification reactions.

The product gases – CO, CO2, H2, CH4 and tar – are generated as a result of

the chemical reactions given in Table. 1.
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CO

CCO2
Ĉ
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Figure 9: Actual and reconstructed solid densities.

The reconstruction of the unknown states of the UCG model is depicted in

Fig. 9, Fig. 10 and Fig. 11. It can be seen from the results that the estimated

and true states are in good agreement.

The reconstructed reaction rates based on the estimated states are shown in

Fig. 12. When the controller starts operation, almost all the coal is consumed

by the reactant gases (see Fig. 9). Therefore, the reaction zone is dominated

by char oxidation and steam gasification reactions. The limiting reactants for

char oxidation and steam gasification reactions are O2 and H2O (g), respectively.

Therefore, the char oxidation reaction follows the trend of the O2 concentration,

cf. Fig 7, and the magnitude of the steam gasification reaction is proportional

to the water influx δ. In short, the controller manipulates the flow rate of the

injected gases to obtain a desired profile for the chemical reactions, which in
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turn yields the desired Hv.
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Figure 12: Rates of the chemical reactions considered in the model.
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6. Conclusion

In this paper, a model-based DISMC is designed to track the desired heating

value for the UCG process. To enable feedback control, the unknown states of

the plant are reconstructed using a GSMUO. The design of this estimator is

based on a quasi-linear second-order representation of the nonlinear control-

oriented model. To make the state reconstruction robust, the gain matrices

for the observer are designed using a LQR method and are adapted by gain-

scheduling techniques. Moreover, it has been shown that the zero dynamics of

the system is bounded. The simulation results demonstrate the effectiveness of

the combination of DISMC and GSMUO to achieve the desired control objective

in the presence of parametric uncertainties, input disturbance and measurement

noise. A quantitative comparison is also made between DISMC, ISMC and

PI controllers, which shows that the DISMC performs the desired task with

the minimum control effort. This research work serves as a prototype for the

development of a model-based control strategy for a field scale UCG process.
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